From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #9908 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Friday, October 14 2022 Volume 14 : Number 9908 Today's Subjects: ----------------- Bleeding Gums? Why You Shouldnât Brush Your Teeth ["Brush Your Teeth" Subject: Bleeding Gums? Why You Shouldnât Brush Your Teeth Bleeding Gums? Why You Shouldnbt Brush Your Teeth http://prodentimbottle.today/fZ_5PuYDACidRB2LPiiHTr5FihZ6r4gBbbjkrsI1EipSBm7lKw http://prodentimbottle.today/QYpZgKLmvQLVV7SYyqjXuOgfZASphg6cn6CbAycq4G72gd0q-Q Plants are affected by multiple pathogens throughout their lifetimes. In response to the presence of pathogens, plants have evolved receptors on their cell surfaces to detect and respond to pathogens. Arabidopsis thaliana is a model organism used to determine specific defense mechanisms of plant-pathogen resistance. These plants have special receptors on their cell surfaces that allow for detection of pathogens and initiate mechanisms to inhibit pathogen growth. They contain two receptors, FLS2 (bacterial flagellin receptor) and EF-Tu (bacterial EF-Tu protein), which use signal transduction pathways to initiate the disease response pathway. The pathway leads to the recognition of the pathogen causing the infected cells to undergo cell death to stop the spread of the pathogen. Plants with FLS2 and EF-Tu receptors have shown to have increased fitness in the population. This has led to the belief that plant-pathogen resistance is an evolutionary mechanism that has built up over generations to respond to dynamic environments, such as increased predation and extreme temperatures. A. thaliana has also been used to study SAR. This pathway uses benzothiadiazol, a chemical inducer, to induce transcription factors, mRNA, of SAR genes. This accumulation of transcription factors leads to inhibition of pathogen-related genes. Plant-pathogen interactions are important for an understanding of how plants have evolved to combat different types of pathogens that may affect them. Variation in resistance of plants across populations is due to variation in environmental factors. Plants that have evolved resistance, whether it be the general variation or the SAR variation, have been able to live longer and hold off necrosis of their tissue (premature death of cells), which leads to better adaptation and fitness for populations that are in rapidly changing environments. In the future, comparisons of the pathosystems of wild populations + their coevolved pathogens with wild-wild hybrids of known parentage may reveal new mechanisms of balancing selection. In life history theory we may find that A. thaliana maintains certain alleles due to pleitropy between plant-pathogen effects and other tr ------------------------------ End of alt.music.moxy-fruvous digest V14 #9908 **********************************************