From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #8432 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Sunday, February 6 2022 Volume 14 : Number 8432 Today's Subjects: ----------------- Go From Chilly To Toasty In 3 Seconds ["Turbo Heater" Subject: Go From Chilly To Toasty In 3 Seconds Go From Chilly To Toasty In 3 Seconds http://govauctionn.co/gXxz34D7ui3sv8yn5mbJrCbyjTYmlfgVNfGJzym5aGRMn-4ucQ http://govauctionn.co/f0PZT2bPu42NFRzSQFhfIvFzq-jAYm4ffa9Q0NRcvt8JVg3_wA verted to more ATP through an electron transport chain with oxygen and protons (hydrogen) as the "terminal electron acceptors". Most of the ATP produced by aerobic cellular respiration is made by oxidative phosphorylation. The energy of O2 released is used to create a chemiosmotic potential by pumping protons across a membrane. This potential is then used to drive ATP synthase and produce ATP from ADP and a phosphate group. Biology textbooks often state that 38 ATP molecules can be made per oxidized glucose molecule during cellular respiration (2 from glycolysis, 2 from the Krebs cycle, and about 34 from the electron transport system). However, this maximum yield is never quite reached because of losses due to leaky membranes as well as the cost of moving pyruvate and ADP into the mitochondrial matrix, and current estimates range around 29 to 30 ATP per glucose. Aerobic metabolism is up to 15 times more efficient than anaerobic metabolism (which yields 2 molecules ATP per 1 molecule glucose) because the double bond in O2 is of higher energy than other double bonds or pairs of single bonds in other common molecules in the biosphere. However, some anaerobic organisms, such as methanogens are able to continue with anaerobic respiration, yielding more ATP by using other inorganic molecules (not oxygen) of high energy as final electron acceptors in the electron transport chain. They share the initial pathway of glycolysis but aerobic metabolism continues with the Krebs cycle and oxidative phosphorylation. The post-glycolytic reactions take place in the mitochondria in eukaryotic cells, and in the cytoplasm in prokaryotic cells. Glycolysis Out of the cytoplasm it goes into the Krebs cycle with the acetyl CoA. It then mixes with CO2 and makes 2 ATP, NADH, and FADH. From there the NADH and FADH go into the NADH reductase, which produces the enzyme. The NADH pulls the enzyme's electrons to send through the electron transport chain. The electron transport chain pulls H+ ions through the chain. From the electron transport chain, the released hydrogen ions make ADP for an result of 32 ATP. O2 provides most of the energy for the process and combines with protons and the electrons to make water. Lastly, ATP leaves through the ATP channel and out of the mitochondria. Main article: Glycolysis Glycolysis is a metabolic pathway that takes place in the cytosol of cells in all living organisms. Glycolysis can be literally translated as "sugar splitting", and occurs with or without the pres ------------------------------ End of alt.music.moxy-fruvous digest V14 #8432 **********************************************