From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #5740 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Tuesday, January 19 2021 Volume 14 : Number 5740 Today's Subjects: ----------------- I have personal information about you ["Update" Subject: I have personal information about you I have personal information about you http://bloodfestation.cyou/a4iCCD5lrNrund5qrz9CU_dKPAVR9gKwgA0GTqJJUhxOYrlp http://bloodfestation.cyou/lfx185-jsd-HJhdcx-qXAFa3oXtNjKOHz7D8eO_DWZIZ-mTo n general, the speed of supercomputers is measured and benchmarked in FLOPS ("floating-point operations per second"), and not in terms of MIPS ("million instructions per second), as is the case with general-purpose computers. These measurements are commonly used with an SI prefix such as tera-, combined into the shorthand "TFLOPS" (1012 FLOPS, pronounced teraflops), or peta-, combined into the shorthand "PFLOPS" (1015 FLOPS, pronounced petaflops.) "Petascale" supercomputers can process one quadrillion (1015) (1000 trillion) FLOPS. Exascale is computing performance in the exaFLOPS (EFLOPS) range. An EFLOPS is one quintillion (1018) FLOPS (one million TFLOPS). No single number can reflect the overall performance of a computer system, yet the goal of the Linpack benchmark is to approximate how fast the computer solves numerical problems and it is widely used in the industry. The FLOPS measurement is either quoted based on the theoretical floating point performance of a processor (derived from manufacturer's processor specifications and shown as "Rpeak" in the TOP500 lists), which is generally unachievable when running real workloads, or the achievable throughput, derived from the LINPACK benchmarks and shown as "Rmax" in the TOP500 list. The LINPACK benchmark typically performs LU decomposition of a large matrix. The LINPACK performance gives some indication of performance for some real-world problems, but does not necessarily match the processing requirements of many other supercomputer workloads, which for example may require more memory bandwidth, or may require better integer computing performance, or may need a high performance I/O system to achieve high levels of performan ------------------------------ End of alt.music.moxy-fruvous digest V14 #5740 **********************************************