From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #5285 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Tuesday, November 10 2020 Volume 14 : Number 5285 Today's Subjects: ----------------- Drive Your Partner Crazy in Bed Tonight ["Granite Male" Subject: Drive Your Partner Crazy in Bed Tonight Drive Your Partner Crazy in Bed Tonight http://granitext.cyou/uV-EzKzn9hCpZOzXQU9iUNVEDHnA7QSmvsgW6rSlmkTFw3CP http://granitext.cyou/7jjC8V01FSty92XVXKVgxygrjzKT_RvAs10b3B7W1TL8bzdc The RF filter on the front end of the receiver is needed to prevent interference from any radio signals at the image frequency. Without an input filter the receiver can receive incoming RF signals at two different frequencies,. The receiver can be designed to receive on either of these two frequencies; if the receiver is designed to receive on one, any other radio station or radio noise on the other frequency may pass through and interfere with the desired signal. A single tunable RF filter stage rejects the image frequency; since these are relatively far from the desired frequency, a simple filter provides adequate rejection. Rejection of interfering signals much closer in frequency to the desired signal is handled by the multiple sharply-tuned stages of the intermediate frequency amplifiers, which do not need to change their tuning. This filter does not need great selectivity, but as the receiver is tuned to different frequencies it must "track" in tandem with the local oscillator. The RF filter also serves to limit the bandwidth applied to the RF amplifier, preventing it from being overloaded by strong out-of-band signals. Block diagram of a dual-conversion superheterodyne receiver To achieve both good image rejection and selectivity, many modern superhet receivers use two intermediate frequencies; this is called a dual-conversion or double-conversion superheterodyne. The incoming RF signal is first mixed with one local oscillator signal in the first mixer to convert it to a high IF frequency, to allow efficient filtering out of the image frequency, then this first IF is mixed with a second local oscillator signal in a second mixer to convert it to a low IF frequency for good bandpass filtering. Some receivers even use triple-conversion. At the cost of the extra stages, the superheterodyne receiver provides the advantage of greater selectivity than can be achieved with a TRF design. Where very high frequencies are in use, only the initial stage of the receiver needs to operate at the highest frequencies; the remaining stages can provide much of the receiver gain at lower frequencies which may be easier to manage. Tuning is simplified compared to a multi-stage TRF design, and only two stages need to track over the tuning range. The total amplification of the receiver is divided between three amplifiers at different frequencies; the RF, IF, and audio amplifier. This reduces problems with feedback and parasitic oscillations that are encountered in receivers ------------------------------ End of alt.music.moxy-fruvous digest V14 #5285 **********************************************