From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #5233 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Sunday, November 1 2020 Volume 14 : Number 5233 Today's Subjects: ----------------- Stabilises voltage and provides surge protection to save energy. ["Serbia] ---------------------------------------------------------------------- Date: Sun, 1 Nov 2020 09:13:22 -0500 From: "Serbian-American Inventor" Subject: Stabilises voltage and provides surge protection to save energy. Stabilises voltage and provides surge protection to save energy. http://farmission.buzz/2vkEWr6ypITBHx8SKRoMF_nlB6GaQs-qIJtuXHLJQGi32jRt http://farmission.buzz/xofFv1XTtFO2JPL3eFj-GL9e2lKoxIKSXLfH0dVLZ25uU2sk Genes that shape inflorescence development have been studied at great length in Arabidopsis. LEAFY (LFY) is a gene that promotes floral meristem identity, regulating inflorescence development in Arabidopsis. Any alterations in timing of LFY expression can cause formation of different inflorescences in the plant. Genes similar in function to LFY include APETALA1 (AP1). Mutations in LFY, AP1, and similar promoting genes can cause conversion of flowers into shoots. In contrast to LEAFY, genes like terminal flower (TFL) support the activity of an inhibitor that prevents flowers from growing on the inflorescence apex (flower primordium initiation), maintaining inflorescence meristem identity. Both types of genes help shape flower development in accordance with the ABC model of flower development. Studies have been recently conducted or are ongoing for homologs of these genes in other flower species. Environmental influences Inflorescence-feeding insect herbivores shape inflorescences by reducing lifetime fitness (how much flowering occurs), seed production by the inflorescences, and plant density, among other traits. In the absence of this herbivory, inflorescences usually produce more flower heads and seeds. Temperature can also variably shape inflorescence development. High temperatures can impair the proper development of flower buds or delay bud development in certain species, while in others, an increase in temperature can hasten inflorescence development. Meristems and inflorescence architecture The shift from the vegetative to reproductive phase of a flower involves the development of an inflorescence meristem that generates floral meristems. Plant inflorescence architecture depends on which meristems becomes flowers and which become shoots. Consequently, genes that regulate floral meristem identity play major roles in determining inflorescence architecture because their expression domain will direct where the plant's flowers are formed. On a larger scale, inflorescence architecture affects the quality and quantity of offspring from selfing and outcrossing, as the architecture can influence pollination success. For example, Asclepias inflorescences have been shown to have an upper size limit, shaped by self-pollination levels due to crosses between inflorescences on the same plant or between flowers on the same inflorescence. In Aesculus sylvatica, it has been shown that the most common inflorescence sizes are correlated with the highest fruit production as ------------------------------ End of alt.music.moxy-fruvous digest V14 #5233 **********************************************