From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #5179 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Sunday, October 25 2020 Volume 14 : Number 5179 Today's Subjects: ----------------- Have an affair with a local MILF today ["Date a MILF" Subject: Have an affair with a local MILF today Have an affair with a local MILF today http://uvcoolers.co/IF6Xp9AJ1cjpVmZIiC4b1Kh1TF4ZQU360pOPUB-VbPhU0rc0 http://uvcoolers.co/lVISxy7nb4UMXtbG4CSXleuNe1rdXvKm4kgr9TcQ5J0XV_zN her order veins have free endings among the cells and are more characteristic of non-monocotyledon angiosperms. They are more likely to be associated with leaf shapes that are toothed, lobed or compound. They may be subdivided as; Pinnate (feather-veined) leaves, with a main central vein or rib (midrib), from which the remainder of the vein system arises Palmate, in which three or more main ribs rise together at the base of the leaf, and diverge upward. Dichotomous, as in ferns, where the veins fork repeatedly Closed: Higher order veins are connected in loops without ending freely among the cells. These tend to be in leaves with smooth outlines, and are characteristic of monocotyledons. They may be subdivided into whether the veins run parallel, as in grasses, or have other patterns. Other descriptive terms There are also many other descriptive terms, often with very specialized usage and confined to specific taxonomic groups. The conspicuousness of veins depends on a number of features. These include the width of the veins, their prominence in relation to the lamina surface and the degree of opacity of the surface, which may hide finer veins. In this regard, veins are called obscure and the order of veins that are obscured and whether upper, lower or both surfaces, further specified. Terms that describe vein prominence include bullate, channelled, flat, guttered, impressed, prominent and recessed (Fig. 6.1 Hawthorne & Lawrence 2013). Veins may show different types of prominence in different areas of the leaf. For instance Pimenta racemosa has a channelled midrib on the upper surfae, but this is promi ------------------------------ Date: Sun, 25 Oct 2020 07:13:38 -0400 From: "**Dial Vision**" <**DialVision**@woodprofit.co> Subject: The innovative reading glasses with lens effect. The innovative reading glasses with lens effect. http://woodprofit.co/4_NqjJB0-mN9tE4mfTbNMM7xdVX9RWMkxjoQfznQZkQsFHV0 http://woodprofit.co/ZHt0QHRiMqrNgq71ff72gUs6TC3XxWDFJS-hsrFTnqgplxw- idy can also vary between individuals of the same species or at different stages of the life cycle. In some insects it differs by caste. In humans, only the gametes are haploid, but in many of the social insects, including ants, bees, and termites, certain individuals develop from unfertilized eggs, making them haploid for their entire lives, even as adults. In the Australian bulldog ant, Myrmecia pilosula, a haplodiploid species, haploid individuals of this species have a single chromosome and diploid individuals have two chromosomes. In Entamoeba, the ploidy level varies from 4n to 40n in a single population. Alternation of generations occurs in most plants, with individuals "alternating" ploidy level between different stages of their sexual life cycle. Tissue-specific polyploidy In large multicellular organisms, variations in ploidy level between different tissues, organs, or cell lineages are common. Because the chromosome number is generally reduced only by the specialized process of meiosis, the somatic cells of the body inherit and maintain the chromosome number of the zygote by mitosis. However, in many situations somatic cells double their copy number by means of endoreduplication as an aspect of cellular differentiation. For example, the hearts of two-year-old human children contain 85% diploid and 15% tetraploid nuclei, but by 12 years of age the proportions become approximately equal, and adults examined contained 27% diploid, 71% tetraploid and 2% octaploid nuclei. Adaptive and ecological significance of variation in ploidy There is continued study and debate regarding the fitness advantages or disadvantages conferred by different ploidy levels. A study comparing the karyotypes of endangered or invasive plants with those of their relatives found that being polyploid as opposed to diploid is associated with a 14% lower risk of being endangered, and a 20% greater chance of being invasive. Polyploidy may be associated with increased vigor and adap ------------------------------ Date: Sun, 25 Oct 2020 07:07:00 -0400 From: "Winter Update" Subject: Winter is here: Stay warm with this incredible heater Winter is here: Stay warm with this incredible heater http://jointflx.buzz/kxsOE3SawRUSR3HADZGfRQrxv3JcieeZvDR77RdmOcTVeeY http://jointflx.buzz/lXo6jskMjFVhvyvmhKyHTkS7ZQ6y47rxDjvw35D1PO3npk3f oploidy is the case where two cell lines, one diploid and one polyploid, coexist within the same organism. Though polyploidy in humans is not viable, mixoploidy has been found in live adults and children. There are two types: diploid-triploid mixoploidy, in which some cells have 46 chromosomes and some have 69, and diploid-tetraploid mixoploidy, in which some cells have 46 and some have 92 chromosomes. It is a major topic of cytology. Dihaploidy and polyhaploidy Not to be confused with haplodiploidy (where diploid and haploid individuals are different sexes). Dihaploid and polyhaploid cells are formed by haploidisation of polyploids, i.e., by halving the chromosome constitution. Dihaploids (which are diploid) are important for selective breeding of tetraploid crop plants (notably potatoes), because selection is faster with diploids than with tetraploids. Tetraploids can be reconstituted from the diploids, for example by somatic fusion. The term "dihaploid" was coined by Bender to combine in one word the number of genome copies (diploid) and their origin (haploid). The term is well established in this original sense, but it has also been used for doubled monoploids or doubled haploids, which are homozygous and used for genetic research. Euploidy and aneuploidy Euploidy (Greek eu, "true" or "even") is the state of a cell or organism having one or more than one set of the same set of chromosomes, possibly excluding the sex-determining chromosomes. For example, most human cells have 2 of each of the 23 homologous monoploid chromosomes, for a total of 46 chromosomes. A human cell with one extra set of the 23 normal chromosomes (functionally triploid) would be considered euploid. Euploid karyotypes would consequentially be a multiple of the haploid number, which in humans is 23. Aneuploidy is the state where one or more individual chromosomes of a normal set are absent or present in more than their usual number of copies (excluding the absence or presence of complete sets, which is considered euploidy). Unlike euploidy, aneuploid karyotypes will not be a multiple of the haploid number. In humans, examples of aneuploidy include having a single extra chromosome (as in Down syndrome, where affected individuals have three copies of chromosome 21) or missing a chromosome (as in Turner syndrome, where affected individuals are missing an X chromosome). Aneuploid karyotypes are given name ------------------------------ Date: Sun, 25 Oct 2020 03:35:53 -0400 From: "Joan Riley" Subject: Congratulations , You've been nominated Congratulations , You've been nominated http://turmericboost.buzz/yCrwDFcpJaE06Oz5qnhEMx6aTv_cnzpBqLxw0Uts4H6_XX4W http://turmericboost.buzz/SLmD7YqRrrw8DPRCFmaPFKWIbCHyOfJPouZSVa7AH9YNRVlS nd and adapt to environmental factors, such as light and mechanical stress from wind. Leaves need to support their own mass and align themselves in such a way as to optimize their exposure to the sun, generally more or less horizontally. However, horizontal alignment maximizes exposure to bending forces and failure from stresses such as wind, snow, hail, falling debris, animals, and abrasion from surrounding foliage and plant structures. Overall leaves are relatively flimsy with regard to other plant structures such as stems, branches and roots. Both leaf blade and petiole structure influence the leaf's response to forces such as wind, allowing a degree of repositioning to minimize drag and damage, as opposed to resistance. Leaf movement like this may also increase turbulence of the air close to the surface of the leaf, which thins the boundary layer of air immediately adjacent to the surface, increasing the capacity for gas and heat exchange, as well as photosynthesis. Strong wind forces may result in diminished leaf number and surface area, which while reducing drag, involves a trade off of also reducing photosynthesis. Thus, leaf design may involve compromise between carbon gain, thermoregulation and water loss on the one hand, and the cost of sustaining both static and dynamic loads. In vascular plants, perpendicular forces are spread over a larger area and are relatively flexible in both bending and torsion, enabling elastic deforming without damage. Many leaves rely on hydrostatic support arranged around a skeleton of vascular tissue for their strength, which depends on maintaining leaf water status. Both the mechanics and architecture of the leaf reflect the need for transportation and support. Read and Stokes (2006) consider two basic models, the "hydrostatic" and "I-beam leaf" form (see Fig 1). Hydrostatic leaves such as in Prostanthera lasianthos are large and thin, and may involve the need for multiple leaves rather single large leaves because of the amount of veins needed to support the periphery of large leaves. But large leaf size favors efficiency in photosynthesis and water conservation, involving further trade offs. On the other hand, I-beam leaves such as Banksia marginata involve specialized structures to stiffen them. These I-beams are formed from bundle sheath extensions of sclerenchyma meeting stiffened sub-epidermal layers. This shifts the balance from reliance on hydrostatic pressure to structural support, an obvious advantage where water is relatively scarce. Long narrow leaves bend more easily than ovate leaf blades of the same area. Monocots typically have such linear leaves that maximize surface area while minimising self-shading. In these a high proportion of longitudinal main veins provide addi ------------------------------ Date: Sun, 25 Oct 2020 04:54:35 -0400 From: "Earn Your Degree" Subject: See if you qualify for Financial Aid See if you qualify for Financial Aid http://uvcooler.guru/SnZlhOxle5pQa_k0_GGq7Vysk3lq-RhQrA80h3q_FlDePp4l http://uvcooler.guru/9SZJlcNV5Irno6cd38VM9R0WuPT3Ra5sIIl6aYDy7EQU1EcE een algae and land plants are now known to form a single evolutionary lineage or clade, one name for which is Viridiplantae (i.e. 'green plants'). According to several molecular clock estimates the Viridiplantae split 1,200 million years ago to 725 million years ago into two clades: chlorophytes and streptophytes. The chlorophytes are considerably more diverse (with around 700 genera) and were originally marine, although some groups have since spread into fresh water. The streptophyte algae (i.e. the streptophyte clade minus the land plants) are less diverse (with around 122 genera) and adapted to fresh water very early in their evolutionary history. They have not spread into marine environments (only a few stoneworts, which belong to this group, tolerate brackish water). Some time during the Ordovician period (which started around 490 million years ago) one or more streptophytes invaded the land and began the evolution of the embryophyte land plants. Present day embryophytes form a monophyletic group called the hemitracheophytes. Becker and Marin speculate that land plants evolved from streptophytes rather than any other group of algae because streptophytes were adapted to living in fresh water. This prepared them to tolerate a range of environmental conditions found on land. Fresh water living made them tolerant of exposure to rain; living in shallow pools required tolerance to temperature variation, high levels of ultra-violet light and seasonal dehydration. Relationships between the groups making up Viridiplantae are still being elucidated. Views have changed considerably since 2000 and classifications have not yet caught up. However, the division between chlorophytes and streptophytes and the evolution of embryophytes from within the latter group, as shown in the cladogram below, are well established. Three approaches to classification are shown. Older classifications, as on the left, treated all green algae as a single division of the plant kingdom under the name Chlorophyta. Land plants were then placed in separate divisions. All the streptophyte algae can be grouped into one paraphyletic taxon, as in the mid ------------------------------ Date: Sat, 24 Oct 2020 08:22:28 -0400 From: "Daily Health" Subject: Snoring can have devastating Snoring can have devastating http://coolingphone.buzz/PnC2u1JYwgrzbj9X_860ximKgSBR1hfw1aujj253PrkaFg http://coolingphone.buzz/jZfJO4fFwmceooyf9qdKpRgXwgA1DDvUh0QlX2wegny8I3g from larger-grained materials such as basalt, jade and jadeite, greenstone and some forms of rhyolite which are not suitable for flaking. The greenstone industry was important in the English Lake District, and is known as the Langdale axe industry. Ground stone implements included adzes, celts, and axes, which were manufactured using a labour-intensive, time-consuming method of repeated grinding against an abrasive stone, often using water as a lubricant. Because of their coarse surfaces, some ground stone tools were used for grinding plant foods and were polished not just by intentional shaping, but also by use. Manos are hand stones used in conjunction with metates for grinding corn or grain. Polishing increased the intrinsic mechanical strength of the axe. Polished stone axes were important for the widespread clearance of woods and forest during the Neolithic period, when crop and livestock farming developed on a large scale. They are distributed very widely and were traded over great distances since the best rock types were often very local. They also became venerated objects, and were frequently buried in long barrows or round barrows with their former owners.[citation needed] During the Neolithic period, large axes were made from flint nodules by chipping a rough shape, a so-called "rough-out". Such products were traded across a wide area. The rough-outs were then polished to give the surface a fine finish to create the axe head. Polishing not only increased the final strength of the product but also meant that the head could penetrate wood more easily.[citation needed] Small lunates from Epipaleolithic site of Mar Dalan, Rawansar , Kermanshah, Zagros There were many sources of supply, including Grimes Graves in Suffolk, Cissbury in Sussex and Spiennes near Mons in Belgium to mention but a few. In Britain, there were numerous small quarries in downland areas where flint was removed for local use, for example.[citation needed] Many other rocks were used to make axes from stones, including the Langdale axe industry as well ------------------------------ Date: Sun, 25 Oct 2020 06:05:43 -0400 From: "Vehicle Warranty Repair" Subject: If you can't afford future car repairs, we can help! If you can't afford future car repairs, we can help! http://tinnitusterminate.buzz/XB4BmZG_1oz5FhKX_R6_I0QLMKos_zSpUnEBS5fPRYo4-Yku http://tinnitusterminate.buzz/cyLJIyamilCrdW7c25aE0BvrKvQd5RrfyFhnb59_hbL_rVGW inated by the haploid gametophyte generation. The sporophyte remains small and dependent on the parent gametophyte for its entire brief life. All other living groups of land plants have a life cycle dominated by the diploid sporophyte generation. It is in the diploid sporophyte that vascular tissue develops. Although some mosses have quite complex water-conducting vessels, bryophytes lack true vascular tissue. Like the vascular plants, bryophytes do have differentiated stems, and although these are most often no more than a few centimeters tall, they do provide mechanical support. Most bryophytes also have leaves, although these typically are one cell thick and lack veins. Unlike the vascular plants, bryophytes lack true roots or any deep anchoring structures. Some species do grow a filamentous network of horizontal stems, but these have a primary function of mechanical attachment rather than extraction of soil nutrients (Palaeos 2008). Rise of vascular plants Reconstruction of a plant of Rhynia During the Silurian and Devonian periods (around 440 to 360 million years ago), plants evolved which possessed true vascular tissue, including cells with walls strengthened by lignin (tracheids). Some extinct early plants appear to be between the grade of organization of bryophytes and that of true vascular plants (eutracheophytes). Genera such as Horneophyton have water-conducting tissue more like that of mosses, but a different life-cycle in which the sporophyte is more developed than the gametophyte. Genera such as Rhynia have a similar life-cycle but have simple tracheids and so are a kind of vascular plant.[citation needed] It was assumed that the gametophyte dominant phase seen in bryophytes used to be the ancestral condition in terrestrial plants, and that the sporophyte dominant stage in vascular plants was a derived trait. But research point out the possibility that both the gametophyte and sporophyte stage were equally independent from each other, and that the mosses and vascular plants in that case are both derived, and has evolved in the opposite direction from the other. During the Devonian period, vascular plants diversified and spread to many different land environments. In addition to vascular tissues which transport water throughout the body, tracheophytes have an outer layer or cuticle that resists drying out. The sporophyte is the dominant generation, and in modern species develops leaves, stems and roots, while the gametophyte remains very sma ------------------------------ Date: Sun, 25 Oct 2020 07:57:35 -0400 From: "Peak BioBoost" Subject: Like natureās Drano for your bowels? Like naturebs Drano for your bowels? http://glucafix.buzz/hyu3_bV9yz0kkQH0YVZifYqtiwR7gwWMRAR5_FuTNZsZl9c http://glucafix.buzz/vi3VL-sv0STuUNPfaj3p3VXQsIiRNYqsaXi20pjbKBSHQJM ation is also relatively minimal. During the summer, the permafrost thaws just enough to let plants grow and reproduce, but because the ground below this is frozen, the water cannot sink any lower, and so the water forms the lakes and marshes found during the summer months. There is a natural pattern of accumulation of fuel and wildfire which varies depending on the nature of vegetation and terrain. Research in Alaska has shown fire-event return intervals (FRIs) that typically vary from 150 to 200 years, with dryer lowland areas burning more frequently than wetter highland areas. A group of muskoxen in Alaska The biodiversity of tundra is low: 1,700 species of vascular plants and only 48 species of land mammals can be found, although millions of birds migrate there each year for the marshes. There are also a few fish species. There are few species with large populations. Notable animals in the Arctic tundra include reindeer (caribou), musk ox, Arctic hare, Arctic fox, snowy owl, lemmings, and even polar bears near the ocean. Tundra is largely devoid of poikilotherms such as frogs or lizards. Due to the harsh climate of Arctic tundra, regions of this kind have seen little human activity, even though they are sometimes rich in natural resources such as petroleum, natural gas and uranium. In recent times this has begun to change in Alaska, Russia, and some other parts of the world: for example, the Yamalo-Nenets Autonomous Okrug produces 90% of Russia's natural gas. Relationship to global warming A severe threat to tundra is global warming, which causes permafrost to melt. The melting of the permafrost in a given area on human time scales (decades or centuries) could radically change which species can survive there. Another concern is that about one third of the world's soil-bound carbon is in taiga and tundra areas. When the permafrost melts, it releases carbon in the form of carbon dioxide and methane, both of which are greenhouse gases. The effect has been observed in Alaska. In the 1970s the tundra was a carb ------------------------------ End of alt.music.moxy-fruvous digest V14 #5179 **********************************************