From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #5117 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Wednesday, October 14 2020 Volume 14 : Number 5117 Today's Subjects: ----------------- View Photos of Asian Singles Today at HotAsianFlirts ["Attractive Asian W] Experience REAL Flying From The Comfort of Your Home! ["Market Research R] Congrats! You've received a CVS reward You have been accepted! ["Good New] What are you looking for? ["Top Matches On LaDate" ] Wanted: Motivated individuals to work from home taking surveys. ["Work Fr] Pocket-sized wireless modem ["Be Safe" ] ---------------------------------------------------------------------- Date: Wed, 14 Oct 2020 05:48:59 -0400 From: "Attractive Asian Women" Subject: View Photos of Asian Singles Today at HotAsianFlirts View Photos of Asian Singles Today at HotAsianFlirts http://watersys.guru/TJum9q0yJU4gvKXm9xBWh2AY7UT-hzAPGhj_nZc8lqrmO4bm http://watersys.guru/V9Qke9hmvaxGfZjoz5DOXVIfIJfVqk_wMWovfXaID9Ax9xS_ In the hydraulic analogy, current flowing through a wire (or resistor) is like water flowing through a pipe, and the voltage drop across the wire is like the pressure drop that pushes water through the pipe. Conductance is proportional to how much flow occurs for a given pressure, and resistance is proportional to how much pressure is required to achieve a given flow. (Conductance and resistance are reciprocals.) The voltage drop (i.e., difference between voltages on one side of the resistor and the other), not the voltage itself, provides the driving force pushing current through a resistor. In hydraulics, it is similar: The pressure difference between two sides of a pipe, not the pressure itself, determines the flow through it. For example, there may be a large water pressure above the pipe, which tries to push water down through the pipe. But there may be an equally large water pressure below the pipe, which tries to push water back up through the pipe. If these pressures are equal, no water flows. (In the image at right, the water pressure below the pipe is zero.) The resistance and conductance of a wire, resistor, or other element is mostly determined by two properties: geometry (shape), and material Geometry is important because it is more difficult to push water through a long, narrow pipe than a wide, short pipe. In the same way, a long, thin copper wire has higher resistance (lower conductance) than a short, thick copper wire. Materials are important as well. A pipe filled with hair restricts the flow of water more than a clean pipe of the same shape and size. Similarly, electrons can flow freely and easily through a copper wire, but cannot flow as easily through a steel wire of the same shape and size, and they essentially cannot flow at all through an insulator like rubber, regardless of its shape. The difference between copper, steel, and rubber is related to their microscopic structure and electron configuration, and is quantified by a property called resistivity. In addition to geometry and material, there are various other factors that influence resistance and conductance, such as temperature; see below. ------------------------------ Date: Wed, 14 Oct 2020 04:48:59 -0400 From: "Market Research Recruiter" Subject: Experience REAL Flying From The Comfort of Your Home! Experience REAL Flying From The Comfort of Your Home! http://lifesmils.guru/0_Lbn5iq2t6lFU2PpRdf-xoP7K1u6phhKsrmlta4YLCAEC__ http://lifesmils.guru/Kyj57NCUTK9CHkI1Pkz4DcKaCzK_4HEqKJ1FQwg97UazoOcO Mild electric shocks are also used for entertainment, especially as a practical joke for example in such devices as a shocking pen or a shocking gum. However devices such as a joy buzzer and most other machines in amusement parks today only use vibration that feels somewhat like an electric shock to someone not expecting it. It is also used entertainingly for sex stimulation. This is usually done via the use of an erotic electrostimulator which induces erotic electrostimulation. These devices may include a violet wand, transcutaneous electrical nerve stimulation, electrical muscle stimulation, and made-for-play units. Policing and personal defense Electroshock weapons are incapacitant weapons used for subduing a person by administering electric shock to disrupt superficial muscle functions. One type is a conductive energy device (CED), an electroshock gun popularly known by the brand name "Taser", which fires projectiles that administer the shock through a thin, flexible wire. Although they are illegal for personal use in many jurisdictions, Tasers have been marketed to the general public. Other electroshock weapons such as stun guns, stun batons ("cattle prods"), and electroshock belts administer an electric shock by direct contact. Electric fences are barriers that uses electric shocks to deter animals or people from crossing a boundary. The voltage of the shock may have effects ranging from uncomfortable, to painful or even lethal. Most electric fencing is used today for agricultural fencing and other forms of animal control purposes, though it is frequently used to enhance security of restricted areas, and there exist places where lethal voltages are used. ------------------------------ Date: Wed, 14 Oct 2020 04:44:38 -0400 From: "Good News" Subject: Congrats! You've received a CVS reward You have been accepted! Congrats! You've received a CVS reward You have been accepted! http://boosterian.today/hyljOrRK_czPnStggLtWmwLegbVLdUJ64n1r1VnoGGv7daiZ http://boosterian.today/o0rnVgKdOT13QKx6G4RkRLPbPUDZ-HaKf471jDEfhRvGz4lF This formula is not exact, as it assumes the current density is totally uniform in the conductor, which is not always true in practical situations. However, this formula still provides a good approximation for long thin conductors such as wires. Another situation for which this formula is not exact is with alternating current (AC), because the skin effect inhibits current flow near the center of the conductor. For this reason, the geometrical cross-section is different from the effective cross-section in which current actually flows, so resistance is higher than expected. Similarly, if two conductors near each other carry AC current, their resistances increase due to the proximity effect. At commercial power frequency, these effects are significant for large conductors carrying large currents, such as busbars in an electrical substation, or large power cables carrying more than a few hundred amperes. The resistivity of different materials varies by an enormous amount: For example, the conductivity of teflon is about 1030 times lower than the conductivity of copper. Loosely speaking, this is because metals have large numbers of "delocalized" electrons that are not stuck in any one place, so they are free to move across large distances. In an insulator, such as Teflon, each electron is tightly bound to a single molecule so a great force is required to pull it away. Semiconductors lie between these two extremes. More details can be found in the article: Electrical resistivity and conductivity. For the case of electrolyte solutions, see the article: Conductivity (electrolytic). Resistivity varies with temperature. In semiconductors, resistivity also changes when exposed to light. See below. ------------------------------ Date: Wed, 14 Oct 2020 05:51:03 -0400 From: "Top Matches On LaDate" Subject: What are you looking for? What are you looking for? http://backaction.co/VAgH_15acjzvBUP7pNHu1LSupAtvwcwB0x0M57lC-Dz5XFbw http://backaction.co/Uufv2k9e3X9FvmaJDoUtHu6y8sqY_pQlI5uCJIryfUWnHYsc In general, when scientists determine the amount of a substance that may be hazardous for humans, animals and/or the environment they determine the amount of the substance likely to trigger effects and if possible establish a safe level. In Europe, the European Food Safety Authority produced risk assessments for more than 4,000 substances in over 1,600 scientific opinions and they provide open access summaries of human health, animal health and ecological hazard assessments in their: OpenFoodTox database. The OpenFoodTox database can be used to screen potential new foods for toxicity. The Toxicology and Environmental Health Information Program (TEHIP) at the United States National Library of Medicine (NLM) maintains a comprehensive toxicology and environmental health web site that includes access to toxins-related resources produced by TEHIP and by other government agencies and organizations. This web site includes links to databases, bibliographies, tutorials, and other scientific and consumer-oriented resources. TEHIP also is responsible for the Toxicology Data Network (TOXNET), an integrated system of toxicology and environmental health databases that are available free of charge on the web. TOXMAP is a Geographic Information System (GIS) that is part of TOXNET. TOXMAP uses maps of the United States to help users visually explore data from the United States Environmental Protection Agency's (EPA) Toxics Release Inventory and Superfund Basic Research Programs. Misuse of the term When used non-technically, the term "toxin" is often applied to any toxic substance, even though the term toxicant would be more appropriate. Toxic substances not directly of biological origin are also termed poisons and many non-technical and lifestyle journalists follow this usage to refer to toxic substances in general.[clarification needed] In the context of quackery and alternative medicine, the term "toxin" is used to refer to any substance alleged to cause ill health. This could range from trace amounts of potentially dangerous pesticides, to supposedly harmful substances produced in the body by intestinal fermentation (auto-intoxication), to food ingredients such as table sugar, monosodium ------------------------------ Date: Wed, 14 Oct 2020 03:26:21 -0400 From: "Work From Home" Subject: Wanted: Motivated individuals to work from home taking surveys. Wanted: Motivated individuals to work from home taking surveys. http://bookofremidies.co/i8OgeSAilt6aLiNzhGdNO4IZXxd7ZEoJkb78l8Do5khDaGwX http://bookofremidies.co/sdrT8V6BMhl-7vzqdoliDF44W2VS5DLxX03LjAvcHdFMNJhB The voltage-current characteristic of human skin is non-linear and depends on many factors such as intensity, duration, history, and frequency of the electrical stimulus. Sweat gland activity, temperature, and individual variation also influence the voltage-current characteristic of skin. In addition to non-linearity, skin impedance exhibits asymmetric and time varying properties. These properties can be modeled with reasonable accuracy. Resistance measurements made at low voltage using a standard ohmmeter do not accurately represent the impedance of human skin over a significant range of conditions. For sinusoidal electrical stimulation less than 10 volts, the skin voltage-current characteristic is quasilinear. Over time, electrical characteristics can become non-linear. The time required varies from seconds to minutes, depending on stimulus, electrode placement, and individual characteristics. Between 10 volts and about 30 volts, skin exhibits non-linear but symmetric electrical characteristics. Above 20 volts, electrical characteristics are both non-linear and symmetric. Skin conductance can increase by several orders of magnitude in milliseconds. This should not be confused with dielectric breakdown, which occurs at hundreds of volts. For these reasons, current flow cannot be accurately calculated by simply applying Ohm's law using a fixed resistance model. Point of entry Macroshock: Current across intact skin and through the body. Current from arm to arm, or between an arm and a foot, is likely to traverse the heart, therefore it is much more dangerous than current between a leg and the ground. This type of shock by definition must pass into the body through the skin. Microshock: Very small current source with a pathway directly connected to the heart tissue. The shock is required to be administered from inside the skin, directly to the heart i.e. a pacemaker lead, or a guide wire, conductive catheter etc. connected to a source of current. This is a largely theoretical hazard as modern devices used in these situations include protections against such currents. ------------------------------ Date: Mon, 12 Oct 2020 09:21:02 -0400 From: "Be Safe" Subject: Pocket-sized wireless modem Pocket-sized wireless modem http://wifiipod.icu/Gb0EKKXD_iKX6-phBajxoEHMvieH3bqmKC7e4Vo-dXr0QNXP http://wifiipod.icu/8WqMK10YwssHBi8wT9wDopzuw576kxQ8IfcetRdSFXF00xh0 Coextruded fibers have two distinct polymers forming the fiber, usually as a core-sheath or side-by-side. Coated fibers exist such as nickel-coated to provide static elimination, silver-coated to provide anti-bacterial properties and aluminum-coated to provide RF deflection for radar chaff. Radar chaff is actually a spool of continuous glass tow that has been aluminum coated. An aircraft-mounted high speed cutter chops it up as it spews from a moving aircraft to confuse radar signals. Microfibers Microfibers in textiles refer to sub-denier fiber (such as polyester drawn to 0.5 denier). Denier and Dtex are two measurements of fiber yield based on weight and length. If the fiber density is known, you also have a fiber diameter, otherwise it is simpler to measure diameters in micrometers. Microfibers in technical fibers refer to ultra fine fibers (glass or meltblown thermoplastics) often used in filtration. Newer fiber designs include extruding fiber that splits into multiple finer fibers. Most synthetic fibers are round in cross-section, but special designs can be hollow, oval, star-shaped or trilobal. The latter design provides more optically reflective properties. Synthetic textile fibers are often crimped to provide bulk in a woven, non woven or knitted structure. Fiber surfaces can also be dull or bright. Dull surfaces reflect more light while bright tends to transmit light and make the fiber more transparent. Very short and/or irregular fibers have been called fibrils. Natural cellulose, such as cotton or bleached kraft, show smaller fibrils jutting out and away from the main fiber structure. Typical properties of selected fibers Fibers can be divided into natural and man-made (synthetic) substance, their properties can affect their performance in many applications. Nowadays, man-made fiber materials are replacing other conventional materials like glass and wood in a number of applications. This is because man-made fibers can be engineered chemically, physically, and mechanically to suit particular technical engineering. In choosing a fiber type, a manufacturer would balance their properties with the technical requirements of the applications. Various fibers are available to select for manufacturing. Here are typical properties of the sample natural fibers as compared to the properties of man-made fibers. ------------------------------ End of alt.music.moxy-fruvous digest V14 #5117 **********************************************