From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #5080 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Wednesday, October 7 2020 Volume 14 : Number 5080 Today's Subjects: ----------------- Don't get stuck at home with a Broken appliance ["CHW Home Warranty" ] ---------------------------------------------------------------------- Date: Wed, 7 Oct 2020 05:25:22 -0400 From: "CHW Home Warranty" Subject: Don't get stuck at home with a Broken appliance Don't get stuck at home with a Broken appliance http://lifeguides.guru/o_8DsBudDSKJmkfx8v6Vu1vHqMvcWXv6IrGE-GJX61tLs3sA http://lifeguides.guru/ypCW0yOKeLM0tZ_rOGxP524PWCaH3mNHGkmGSdpGUpe4pcFl Various types of linear actuators move in and out instead of by spinning, and often have quicker direction changes, particularly when very large forces are needed such as with industrial robotics. They are typically powered by compressed and oxidized air (pneumatic actuator) or an oil (hydraulic actuator) Linear actuators can also be powered by electricity which usually consists of a motor and a leadscrew. Another common type is a mechanical linear actuator that is turned by hand, such as a rack and pinion on a car. Series elastic actuators Series elastic actuation (SEA) relies on the idea of introducing intentional elasticity between the motor actuator and the load for robust force control. Due to the resultant lower reflected inertia, series elastic actuation improves safety when a robot interacts with the environment (e.g., humans or workpiece) or during collisions. Furthermore, it also provides energy efficiency and shock absorption (mechanical filtering) while reducing excessive wear on the transmission and other mechanical components. This approach has successfully been employed in various robots, particularly advanced manufacturing robots and walking humanoid robots. The controller design of a series elastic actuator is most often performed within the passivity framework as it ensures the safety of interaction with unstructured environments. Despite its remarkable stability robustness, this framework suffers from the stringent limitations imposed on the controller which may trade-off performance.The reader is referred to the following survey which summarizes the common controller architectures for SEA along with the corresponding sufficient passivity conditions. One recent study has derived the necessary and sufficient passivity conditions for one of the most common impedance control architectures, namely velocity-sourced SEA. This work is of particular importance as it drives the non-conservative passivity bounds in an SEA scheme for the first time which allows a larger selection of control gains. ------------------------------ Date: Tue, 6 Oct 2020 09:38:43 -0400 From: "Saver Pro" Subject: New Technology New Technology http://wattods.icu/8skcGlAViHkdw9KSgLKFtM56fND7CosVcCs4xfqBLMhBMBNu http://wattods.icu/55f2wi2_4lOePhLPvILTWhsabfRx8hEswkGmV7vbRbJdcQcw Seeds are produced in several related groups of plants, and their manner of production distinguishes the angiosperms ("enclosed seeds") from the gymnosperms ("naked seeds"). Angiosperm seeds are produced in a hard or fleshy structure called a fruit that encloses the seeds for protection in order to secure healthy growth. Some fruits have layers of both hard and fleshy material. In gymnosperms, no special structure develops to enclose the seeds, which begin their development "naked" on the bracts of cones. However, the seeds do become covered by the cone scales as they develop in some species of conifer. Seed production in natural plant populations varies widely from year to year in response to weather variables, insects and diseases, and internal cycles within the plants themselves. Over a 20-year period, for example, forests composed of loblolly pine and shortleaf pine produced from 0 to nearly 5 million sound pine seeds per hectare. Over this period, there were six bumper, five poor, and nine good seed crops, when evaluated for production of adequate seedlings for natural forest reproduction. Development Stages of seed development: I Zygote II Proembryo III Globular IV Heart V Torpedo VI Mature Embryo Key: 1. Endosperm 2. Zygote 3. Embryo 4. Suspensor 5. Cotyledons 6. Shoot Apical Meristem 7. Root Apical Meristem 8. Radicle 9. Hypocotyl 10. Epicotyl 11. Seed Coat Angiosperm (flowering plants) seeds consist of three genetically distinct constituents: (1) the embryo formed from the zygote, (2) the endosperm, which is normally triploid, (3) the seed coat from tissue derived from the maternal tissue of the ovule. In angiosperms, the process of seed development begins with double fertilization, which involves the fusion of two male gametes with the egg cell and the central cell to form the primary endosperm and the zygote. Right after fertilization, the zygote is mostly inactive, but the primary endosperm divides rapidly to form the endosperm tissue. This tissue becomes the food the young plant will consume until the roots have developed after germination. Ovule Main article: Ovule Plant ovules: Gymnosperm ovule on left, angiosperm ovule (inside ovary) on right After fertilization the ovules develop into the seeds. The ovule consists of a number of components: The funicle (funiculus, funiculi) or seed stalk which attaches the ovule to the placenta and hence ovary or fruit wall, at the pericarp. The nucellus, the remnant of the megasporangium and main region of the ovule where the megagametophyte develops. The micropyle, a small pore or opening in the apex of the integument of the ovule where the pollen tube usually enters during the process of fertilization. The chalaza, the base of the ovule opposite the micropyle, where integument and nucellus are joined together. The shape of the ovules as they develop often affects the final shape of the seeds. Plants generally produce ovules of four shapes: the most common shape is called anatropous, with a curved shape. Orthotropous ovules are straight with all the parts of the ovule lined up in a long row producing an uncurved seed. Campylotropous ovules have a curved megagametophyte often giving the seed a tight "C" shape. The last ovule shape is called amphitropous, where the ovule is partly inverted and turned back 90 degrees on its stalk (the funicle or funiculus). In the majority of flowering plants, the zygote's first division is transversely oriented in regards to the long axis, and this establishes the polarity of the embryo. The upper or chalazal pole becomes the main area of growth of the embryo, while the lower or micropylar pole produces the stalk-like suspensor that attaches to the micropyle. The suspensor absorbs and manufactures nutrients from the endosperm that are used during the embryo's growth ------------------------------ End of alt.music.moxy-fruvous digest V14 #5080 **********************************************