From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #4949 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Friday, September 11 2020 Volume 14 : Number 4949 Today's Subjects: ----------------- Bulletproof the entire brain and gums against the bacteria. ["Professiona] We Want Your Thoughts! Claim Your Fifty Dollar Costco Reward ["Costco Sho] Congratulations , You've been nominated ["Joan Riley" Subject: Bulletproof the entire brain and gums against the bacteria. Bulletproof the entire brain and gums against the bacteria. http://daylighty.buzz/1l5NmPsXCvOL1pZmE0jK8OArkVgSfE_TNrfDzBFbTU-YbQ http://daylighty.buzz/FtJ8WSMBR-7c0zxMht9k8kXd3B_w3RgRiyJeNIrOKyVdnA Resistance to herbicides can be based on one of the following biochemical mechanisms: Target-site resistance: This is due to a reduced (or even lost) ability of the herbicide to bind to its target protein. The effect usually relates to an enzyme with a crucial function in a metabolic pathway, or to a component of an electron-transport system. Target-site resistance may also be caused by an over-expression of the target enzyme (via gene amplification or changes in a gene promoter). Non-target-site resistance: This is caused by mechanisms that reduce the amount of herbicidal active compound reaching the target site. One important mechanism is an enhanced metabolic detoxification of the herbicide in the weed, which leads to insufficient amounts of the active substance reaching the target site. A reduced uptake and translocation, or sequestration of the herbicide, may also result in an insufficient herbicide transport to the target site. Cross-resistance: In this case, a single resistance mechanism causes resistance to several herbicides. The term target-site cross-resistance is used when the herbicides bind to the same target site, whereas non-target-site cross-resistance is due to a single non-target-site mechanism (e.g., enhanced metabolic detoxification) that entails resistance across herbicides with different sites of action. Multiple resistance: In this situation, two or more resistance mechanisms are present within individual plants, or within a plant population. Resistance management Worldwide experience has been that farmers tend to do little to prevent herbicide resistance developing, and only take action when it is a problem on their own farm or neighbor's. Careful observation is important so that any reduction in herbicide efficacy can be detected. This may indicate evolving resistance. It is vital that resistance is detected at an early stage as if it becomes an acute, whole-farm problem, options are more limited and greater expense is almost inevitable. Table 1 lists factors which enable the risk of resistance to be assessed. An essential pre-requisite for confirmation of resistance is a good diagnostic test. Ideally this should be rapid, accurate, cheap and accessible. Many diagnostic tests have been developed, including glasshouse pot assays, petri dish assays and chlorophyll fluorescence. A key component of such tests is that the response of the suspect population to a herbicide can be compared with that of known susceptible and resistant standards under controlled conditions. Most cases of herbicide resistance are a consequence of the repeated use of herbicides, often in association with crop monoculture and reduced cultivation practices. It is necessary, therefore, to modify these practices in order to prevent or delay the onset of resistance or to control existing resistant populations. A key objective should be the reduction in selection pressure. An integrated weed management (IWM) approach is required, in which as many tactics as possible are used to combat weeds. In this way, less reliance is placed on herbicides and so selection pressure should be reduced. Optimising herbicide input to the economic threshold level should avoid the unnecessary use of herbicides and reduce selection pressure. Herbicides should be used to their greatest potential by ensuring that the timing, dose, application method, soil and climatic conditions are optimal for good activity. In the UK, partially resistant grass weeds such as Alopecurus myosuroides (blackgrass) and Avena genus (wild oat) can often be controlled adequately when herbicides are applied at the 2-3 leaf stage, whereas later applications at the 2-3 tiller stage can fail badly. Patch spraying, or applying herbicide to only the badly infested areas of fields, is another means of reducing total herbicide use ------------------------------ Date: Fri, 11 Sep 2020 05:22:05 -0400 From: "Costco Shopper Feedback" Subject: We Want Your Thoughts! Claim Your Fifty Dollar Costco Reward We Want Your Thoughts! Claim Your Fifty Dollar Costco Reward http://uvcoolers.co/mxr-_5OAGTqNVLj4jl89POiSqJ0IIIHfsl-8kjmUOAN349g http://uvcoolers.co/ZJxVAr8fnBay1dpQr7WEGJvEZmNTD1lPAfop8uqFLGT6CvY Knowledge of volatility is often useful in the separation of components from a mixture. When a mixture of condensed substances contains multiple substances with different levels of volatility, its temperature and pressure can be manipulated such that the more volatile components change to a vapor while the less volatile substances remain in the liquid or solid phase. The newly formed vapor can then be discarded or condensed into a separate container. When the vapors are collected, this process is known as distillation. The process of petroleum refinement utilizes a technique known as fractional distillation, which allows several chemicals of varying volatility to be separated in a single step. Crude oil entering a refinery is composed of many useful chemicals that need to be separated. The crude oil flows into a distillation tower and is heated up, which allows the more volatile components such as butane and kerosene to vaporize. These vapors move up the tower and eventually come in contact with cold surfaces, which causes them to condense and be collected. The most volatile chemical condense at the top of the column while the least volatile chemicals to vaporize condense in the lowest portion. On the right is a picture illustrating the design of a distillation tower. The difference in volatility between water and ethanol has traditionally been used in the refinement of drinking alcohol. In order to increase the concentration of ethanol in the product, alcohol makers would heat the initial alcohol mixture to a temperature where most of the ethanol vaporizes while most of the water remains liquid. The ethanol vapor is then collected and condensed in a separate container, resulting in a much more concentrated product. Perfume Volatility is an important consideration when crafting perfumes. Humans detect odors when aromatic vapors come in contact with receptors in the nose. Ingredients that vaporize quickly after being applied will produce fragrant vapors for a short time before the oils evaporate. Slow-evaporating ingredients can stay on the skin for weeks or even months, but may not produce enough vapors to produce a strong aroma. To prevent these problems, perfume designers carefully consider the volatility of essential oils and other ingredients in their perfumes. Appropriate evaporation rates are achieved by modifying the amount of highly volatile and non-volatile ingredients used ------------------------------ Date: Fri, 11 Sep 2020 04:07:24 -0400 From: "Joan Riley" Subject: Congratulations , You've been nominated Congratulations , You've been nominated http://poweriest.buzz/rVGC-ggQV5_2aDsFUoOEs1U3eXLk1iiSC4FrJ_sYFQ-41yAw http://poweriest.buzz/7zAL_TFhLf6H0D6FUbE8GFEVcPizT4zb9Lh--Eew5l7dGPg Herbicides are often classified according to their site of action, because as a general rule, herbicides within the same site of action class will produce similar symptoms on susceptible plants. Classification based on site of action of herbicide is comparatively better as herbicide resistance management can be handled more properly and effectively. Classification by mechanism of action (MOA) indicates the first enzyme, protein, or biochemical step affected in the plant following application. List of mechanisms found in modern herbicides ACCase inhibitors: Acetyl coenzyme A carboxylase (ACCase) is part of the first step of lipid synthesis. Thus, ACCase inhibitors affect cell membrane production in the meristems of the grass plant. The ACCases of grasses are sensitive to these herbicides, whereas the ACCases of dicot plants are not. ALS inhibitors: Acetolactate synthase (ALS; also known as acetohydroxyacid synthase, or AHAS) is part of the first step in the synthesis of the branched-chain amino acids (valine, leucine, and isoleucine). These herbicides slowly starve affected plants of these amino acids, which eventually leads to inhibition of DNA synthesis. They affect grasses and dicots alike. The ALS inhibitor family includes various sulfonylureas (SUs) (such as flazasulfuron and metsulfuron-methyl), imidazolinones (IMIs), triazolopyrimidines (TPs), pyrimidinyl oxybenzoates (POBs), and sulfonylamino carbonyl triazolinones (SCTs). The ALS biological pathway exists only in plants and not animals, thus making the ALS-inhibitors among the safest herbicides. EPSPS inhibitors: Enolpyruvylshikimate 3-phosphate synthase enzyme (EPSPS) is used in the synthesis of the amino acids tryptophan, phenylalanine and tyrosine. They affect grasses and dicots alike. Glyphosate (Roundup) is a systemic EPSPS inhibitor inactivated by soil contact. The discovery of synthetic auxins inaugurated the era of organic herbicides. They were discovered in the 1940s after a long study of the plant growth regulator auxin. Synthetic auxins mimic this plant hormone in some way. They have several points of action on the cell membrane, and are effective in the control of dicot plants. 2,4-D and 2,4,5-T are synthetic auxin herbicides. Photosystem II inhibitors reduce electron flow from water to NADP+ at the photochemical step in photosynthesis. They bind to the Qb site on the D1 protein, and prevent quinone from binding to this site. Therefore, this group of compounds causes electrons to accumulate on chlorophyll molecules. As a consequence, oxidation reactions in excess of those normally tolerated by the cell occur, and the plant dies. The triazine herbicides (including atrazine) and urea derivatives (diuron) are photosystem II inhibitors. Photosystem I inhibitors steal electrons from ferredoxins, specifically the normal pathway through FeS to Fdx to NADP+, leading to direct discharge of electrons on oxygen. As a result, reactive oxygen species are produced and oxidation reactions in excess of those normally tolerated by the cell occur, leading to plant death. Bipyridinium herbicides (such as diquat and paraquat) inhibit the FeS to Fdx step of that chain, while diphenyl ether herbicides (such as nitrofen, nitrofluorfen, and acifluorfen) inhibit the Fdx to NADP+ step. HPPD inhibitors inhibit 4-hydroxyphenylpyruvate dioxygenase, which are involved in tyrosine breakdown. Tyrosine breakdown products are used by plants to make carotenoids, which protect chlorophyll in plants from being destroyed by sunlight. If this happens, the plants turn white due to complete loss of chlorophyll, and the plants die. Mesotrione and sulcotrione are herbicides in this class; a drug, nitisinone, was discovered in the course of developing this class of herbicides. ------------------------------ Date: Fri, 11 Sep 2020 06:12:01 -0400 From: "Ukrainian Live Show" Subject: View the Videos of 30,000 Ukrainian Women View the Videos of 30,000 Ukrainian Women http://uvcoolers.co/n9zqO8sBHpjtaKcZlMwP8y_W0ldtnJo7qTMYdo6nEnGpKj5E http://uvcoolers.co/5wrAUVt3LBSBLjwCYAKqQlMHMp4J2baAdF4WFj1_bw3jRWE0 Herbicides have widely variable toxicity in addition to acute toxicity arising from ingestion of a significant quantity rapidly, and chronic toxicity arising from environmental and occupational exposure over long periods. Much public suspicion of herbicides revolves around a confusion between valid statements of acute toxicity as opposed to equally valid statements of lack of chronic toxicity at the recommended levels of usage. For instance, while glyphosate formulations with tallowamine adjuvants are acutely toxic, their use was found to be uncorrelated with any health issues like cancer in a massive US Department of Health study on 90,000 members of farmer families for over a period of 23 years. That is, the study shows lack of chronic toxicity, but cannot question the herbicide's acute toxicity. Some herbicides cause a range of health effects ranging from skin rashes to death. The pathway of attack can arise from intentional or unintentional direct consumption, improper application resulting in the herbicide coming into direct contact with people or wildlife, inhalation of aerial sprays, or food consumption prior to the labelled preharvest interval. Under some conditions, certain herbicides can be transported via leaching or surface runoff to contaminate groundwater or distant surface water sources. Generally, the conditions that promote herbicide transport include intense storm events (particularly shortly after application) and soils with limited capacity to adsorb or retain the herbicides. Herbicide properties that increase likelihood of transport include persistence (resistance to degradation) and high water solubility. Phenoxy herbicides are often contaminated with dioxins such as TCDD;[citation needed] research has suggested such contamination results in a small rise in cancer risk after occupational exposure to these herbicides. Triazine exposure has been implicated in a likely relationship to increased risk of breast cancer, although a causal relationship remains unclear. Herbicide manufacturers have at times made false or misleading claims about the safety of their products. Chemical manufacturer Monsanto Company agreed to change its advertising after pressure from New York attorney general Dennis Vacco; Vacco complained about misleading claims that its spray-on glyphosate-based herbicides, including Roundup, were safer than table salt and "practically non-toxic" to mammals, birds, and fish (though proof that this was ever said is hard to find). Roundup is toxic and has resulted in death after being ingested in quantities ranging from 85 to 200 ml, although it has also been ingested in quantities as large as 500 ml with only mild or moderate symptoms. The manufacturer of Tordon 101 (Dow AgroSciences, owned by the Dow Chemical Company) has claimed Tordon 101 has no effects on animals and insects, in spite of evidence of strong carcinogenic activity of the active ingredient, picloram, in studies on rats. The risk of Parkinson's disease has been shown to increase with occupational exposure to herbicides and pesticides. The herbicide paraquat is suspected to be one such factor. All commercially sold, organic and non-organic herbicides must be extensively tested prior to approval for sale and labeling by the Environmental Protection Agency. However, because of the large number of herbicides in use, concern regarding health effects is significant. In addition to health effects caused by herbicides themselves, commercial herbicide mixtures often contain other chemicals, including inactive ingredients, which have negative impacts on human healt ------------------------------ Date: Fri, 11 Sep 2020 03:18:55 -0400 From: "Stop Your Cat Peeing" Subject: No more cat urine everywhere No more cat urine everywhere http://poweriest.buzz/-kBsZOIJefhhFea9tN53Y2X6VcxJcK5JqVJKmWmH27g9Zu1c http://poweriest.buzz/h5-TdmsRW6sj5sgI1j9mmqoP9MrsRncJ-F862YJDXQRdOb0k Each science has its own unique sets of laboratory equipment. In the atmosphere, there are many things or qualities of the atmosphere that can be measured. Rain, which can be observed, or seen anywhere and anytime was one of the first atmospheric qualities measured historically. Also, two other accurately measured qualities are wind and humidity. Neither of these can be seen but can be felt. The devices to measure these three sprang up in the mid-15th century and were respectively the rain gauge, the anemometer, and the hygrometer. Many attempts had been made prior to the 15th century to construct adequate equipment to measure the many atmospheric variables. Many were faulty in some way or were simply not reliable. Even Aristotle noted this in some of his work as the difficulty to measure the air. Sets of surface measurements are important data to meteorologists. They give a snapshot of a variety of weather conditions at one single location and are usually at a weather station, a ship or a weather buoy. The measurements taken at a weather station can include any number of atmospheric observables. Usually, temperature, pressure, wind measurements, and humidity are the variables that are measured by a thermometer, barometer, anemometer, and hygrometer, respectively. Professional stations may also include air quality sensors (carbon monoxide, carbon dioxide, methane, ozone, dust, and smoke), ceilometer (cloud ceiling), falling precipitation sensor, flood sensor, lightning sensor, microphone (explosions, sonic booms, thunder), pyranometer/pyrheliometer/spectroradiometer (IR/Vis/UV photodiodes), rain gauge/snow gauge, scintillation counter (background radiation, fallout, radon), seismometer (earthquakes and tremors), transmissometer (visibility), and a GPS clock for data logging. Upper air data are of crucial importance for weather forecasting. The most widely used technique is launches of radiosondes. Supplementing the radiosondes a network of aircraft collection is organized by the World Meteorological Organization. Remote sensing, as used in meteorology, is the concept of collecting data from remote weather events and subsequently producing weather information. The common types of remote sensing are Radar, Lidar, and satellites (or photogrammetry). Each collects data about the atmosphere from a remote location and, usually, stores the data where the instrument is located. Radar and Lidar are not passive because both use EM radiation to illuminate a specific portion of the atmosphere. Weather satellites along with more general-purpose Earth-observing satellites circling the earth at various altitudes have become an indispensable tool for studying a wide range of phenomena from forest fires to El NiC1o. Spatial scales The study of the atmosphere can be divided into distinct areas that depend on both time and spatial scales. At one extreme of this scale is climatology. In the timescales of hours to days, meteorology separates into micro-, meso-, and synoptic scale meteorology. Respectively, the geospatial size of each of these three scales relates directly with the appropriate timescale. Other subclassifications are used to describe the unique, local, or broad effects within those subclasses. ------------------------------ Date: Wed, 9 Sep 2020 06:17:07 -0400 From: "Keto Bread" Subject: #1 Greatest Danger in the American Diet #1 Greatest Danger in the American Diet http://lifeshack.guru/9L4ym_h_bFbN2Fdmzs14POAZeR877sNbzkxvUmT4PmvnFQ http://lifeshack.guru/meZQxPJe1AjTYtRLYPwHDf7AEQJfxhvojJ1tWfNWPg5HjQ Environmental risk factors for addiction are the experiences of an individual during their lifetime that interact with the individual's genetic composition to increase or decrease his or her vulnerability to addiction. A number of different environmental factors have been implicated as risk factors for addiction, including various psychosocial stressors. The National Institute on Drug Abuse (NIDA) cites lack of parental supervision, the prevalence of peer substance use, drug availability, and poverty as risk factors for substance use among children and adolescents. The brain disease model of addiction posits that an individual's exposure to an addictive drug is the most significant environmental risk factor for addiction. However, many researchers, including neuroscientists, indicate that the brain disease model presents a misleading, incomplete, and potentially detrimental explanation of addiction. Adverse childhood experiences (ACEs) are various forms of maltreatment and household dysfunction experienced in childhood. The Adverse Childhood Experiences Study by the Centers for Disease Control and Prevention has shown a strong dosebresponse relationship between ACEs and numerous health, social, and behavioral problems throughout a person's lifespan, including substance abuse. Children's neurological development can be permanently disrupted when they are chronically exposed to stressful events such as physical, emotional, or sexual abuse, physical or emotional neglect, witnessing violence in the household, or a parent being incarcerated or suffering from a mental illness. As a result, the child's cognitive functioning or ability to cope with negative or disruptive emotions may be impaired. Over time, the child may adopt substance use as a coping mechanism, particularly during adolescence. A study of 900 court cases involving children who experienced abuse found that a vast amount of them went on to suffer from some form of addiction in their adolescence or adult life. This pathway towards addiction that is opened through stressful experiences during childhood can be avoided by a change in environmental factors throughout an individual's life and opportunities of professional help. If one has friends or peers who engage in drug use favorably, the chances of them developing an addiction increases. Family conflict and home management is also a cause for one to become engaged in alcohol or other drug use. Age Adolescence represents a period of unique vulnerability for developing an addiction. In adolescence, the incentive-rewards systems in the brain mature well before the cognitive control center. This consequentially grants the incentive-rewards systems a disproportionate amount of power in the behavioral decision-making process. Therefore, adolescents are increasingly likely to act on their impulses and engage in risky, potentially addicting behavior before considering the consequences. Not only are adolescents more likely to initiate and maintain drug use, but once addicted they are more resistant to treatment and more liable to relapse. ------------------------------ End of alt.music.moxy-fruvous digest V14 #4949 **********************************************