From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #4944 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Thursday, September 10 2020 Volume 14 : Number 4944 Today's Subjects: ----------------- New Device Cuts Your Electric Bill Up to 90% ["PowerPro" Subject: New Device Cuts Your Electric Bill Up to 90% New Device Cuts Your Electric Bill Up to 90% http://slaverage.buzz/DDCoRVAxP4QCa2-O7WBeFKZ4dJilZjOkWsyaCTM2fHJT28w http://slaverage.buzz/-uFvT9-2YzaX7O_IfPyST3GBCCgiTi8pZmln_xDDnhQ-PQI The phase diagram explains why liquids do not exist in space or any other vacuum. Since the pressure is zero (except on surfaces or interiors of planets and moons) water and other liquids exposed to space will either immediately boil or freeze depending on the temperature. In regions of space near the earth, water will freeze if the sun is not shining directly on it and vapourize (sublime) as soon as it is in sunlight. If water exists as ice on the moon, it can only exist in shadowed holes where the sun never shines and where the surrounding rock doesn't heat it up too much. At some point near the orbit of Saturn, the light from the sun is too faint to sublime ice to water vapour. This is evident from the longevity of the ice that composes Saturn's rings. Solutions Main article: solution Liquids can form solutions with gases, solids, and other liquids. Two liquids are said to be miscible if they can form a solution in any proportion; otherwise they are immiscible. As an example, water and ethanol (drinking alcohol) are miscible whereas water and gasoline are immiscible. In some cases a mixture of otherwise immiscible liquids can be stabilized to form an emulsion, where one liquid is dispersed throughout the other as microscopic droplets. Usually this requires the presence of a surfactant in order to stabilize the droplets. A familiar example of an emulsion is mayonnaise, which consists of a mixture of water and oil that is stabilized by lecithin, a substance found in egg yolks. Microscopic description The molecules which compose liquids are disordered and strongly interacting, which makes liquids difficult to describe rigorously at the molecular level. This stands in contrast with the other two common phases of matter, gases and solids. Although gases are disordered, they are sufficiently dilute that many-body interactions can be ignored, and molecular interactions can instead be modeled in terms of well-defined binary collision events. Conversely, although solids are dense and strongly interacting, their regular structure at the molecular level (e.g. a crystalline lattice) allows for significant theoretical simplifications. For these reasons, the microscopic theory of liquids is less developed than that of gases and solids. Static structure factor Main article: structure of liquids and glasses Structure of a classical monatomic liquid. Atoms have many nearest neighbors in contact, yet no long-range order is present. In a liquid, atoms do not form a crystalline lattice, nor do they show any other form of long-range order. This is evidenced by the absence of Bragg peaks in X-ray and neutron diffraction. Under normal conditions, the diffraction pattern has circular symmetry, expressing the isotropy of the liquid. In radial direction, the diffraction intensity smoothly oscillates. This is usually described by the static structure factor S(q), with wavenumber q=(4?/?)sin? given by the wavelength ? of the probe (photon or neutron) and the Bragg angle ?. The oscillations of S(q) express the near order of the liquid, i.e. the correlations between an atom and a few shells of nearest, second nearest, ... neighbors. ------------------------------ End of alt.music.moxy-fruvous digest V14 #4944 **********************************************