From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #4816 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Saturday, August 22 2020 Volume 14 : Number 4816 Today's Subjects: ----------------- Doctors Use This Secret Book of Alternative Medicine ["Boost Your Immunit] ---------------------------------------------------------------------- Date: Fri, 21 Aug 2020 11:58:30 -0400 From: "Boost Your Immunity" Subject: Doctors Use This Secret Book of Alternative Medicine Doctors Use This Secret Book of Alternative Medicine http://recombe.cyou/m4H_4wSGLiVjAw4aRY0niW0l06GGK8PhK3wswlP8UF4xQKE http://recombe.cyou/XGKXF8Jb5jBDv5g0s7-Xocjazjr_oyyTmH5RrXJz6Cfn_TY Most vehicles, with the notable exception of railed vehicles, have at least one steering mechanism. Wheeled vehicles steer by angling their front or rear wheels. The B-52 Stratofortress has a special arrangement in which all four main wheels can be angled. Skids can also be used to steer by angling them, as in the case of a snowmobile. Ships, boats, submarines, dirigibles and aeroplanes usually have a rudder for steering. On an airplane, ailerons are used to bank the airplane for directional control, sometimes assisted by the rudder. Stopping Main article: Brake With no power applied, most vehicles come to a stop due to friction. But it is often required to stop a vehicle faster than by friction alone: so almost all vehicles are equipped with a braking system. Wheeled vehicles are typically equipped with friction brakes, which use the friction between brake pads (stators) and brake rotors to slow the vehicle. Many airplanes have high performance versions of the same system in their landing gear for use on the ground. A Boeing 757 brake, for example, has 3 stators and 4 rotors. The Space Shuttle also uses frictional brakes on its wheels. As well as frictional brakes, hybrid/electric cars, trolleybuses and electric bicycles can also use regenerative brakes to recycle some of the vehicle's potential energy. High-speed trains sometimes use frictionless Eddy-current brakes; however widespread application of the technology has been limited by overheating and interference issues. Aside from landing gear brakes, most large aircraft have other ways of decelerating. In aircraft, air brakes are aerodynamic surfaces that create friction, with the air flow causing the vehicle to slow. These are usually implemented as flaps that oppose air flow when extended and are flush with aircraft when retracted. Reverse thrust is also used in many aeroplane engines. Propeller aircraft achieve reverse thrust by reversing the pitch of the propellers, while jet aircraft do so by redirecting their engine exhaust forwards. On aircraft carriers, arresting gears are used to stop an aircraft. Pilots may even apply full forward throttle on touchdown, in case the arresting gear does not catch and a go around is needed. Parachutes are used to slow down vehicles travelling very fast. Parachutes have been used in land, air and space vehicles such as the ThrustSSC, Eurofighter Typhoon and Apollo Command Module. Some older Soviet passenger jets had braking parachutes for emergency landings. Boats use similar devices called sea anchors to maintain stability in rough seas. To further increase the rate of deceleration or where the brakes have failed, several mechanisms can be used to stop a vehicle. Cars and rolling stock usually have hand brakes that, while designed to secure an already parked vehicle, can provide limited braking should the primary brakes fail. A secondary procedure called forward-slip is sometimes used to slow airplanes by flying at an angle, causing more drag. ------------------------------ End of alt.music.moxy-fruvous digest V14 #4816 **********************************************