From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #4739 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Monday, August 10 2020 Volume 14 : Number 4739 Today's Subjects: ----------------- If you feel tired during the day, this can happen to you in 7 days ["Figh] ---------------------------------------------------------------------- Date: Mon, 10 Aug 2020 08:56:26 -0400 From: "Fight Infections" Subject: If you feel tired during the day, this can happen to you in 7 days If you feel tired during the day, this can happen to you in 7 days http://routiine.today/bMusmYNBwIagcST1hxWdh6KkbZ-r_y4xgTOSyphcqY9A-P1T http://routiine.today/2Ln2MpS1o-Ueu-5i93PnKNlPhAmmqc0hzlp68l9s7xYCxDO_ Communication is varied at all scales of life, from interactions between microscopic organisms to those of large groups of people. Nevertheless, the signals used in communication abide by a fundamental property: they must be a quality of the receiver that can transfer information to a receiver that is capable of interpreting the signal and modifying its behavior accordingly. Signals are distinct from cues in that evolution has selected for signalling between both parties, whereas cues are merely informative to the observer and may not have originally been used for the intended purpose. The natural world is replete with examples of signals, from the luminescent flashes of light from fireflies, to chemical signaling in red harvester ants to prominent mating displays of birds such as the Guianan cock-of-the-rock, which gather in leks, the pheromones released by the corn earworm moth, the dancing patterns of the blue-footed booby, or the alarm sound Synoeca cyanea make by rubbing their mandibles against their nest. Yet other examples are the cases of the grizzled skipper and Spodoptera littoralis where pheromones are released as a sexual recognition mechanism that drives evolution. The nature of communication poses evolutionary concerns, such as the potential for deceit or manipulation on the part of the sender. In this situation, the receiver must be able to anticipate the interests of the sender and act appropriately to a given signal. Should any side gain advantage in the short term, evolution would select against the signal or the response. The conflict of interests between the sender and the receiver results in an evolutionarily stable state only if both sides can derive an overall benefit. Although the potential benefits of deceit could be great in terms of mating success, there are several possibilities for how dishonesty is controlled, which include indices, handicaps, and common interests. Indices are reliable indicators of a desirable quality, such as overall health, fertility, or fighting ability of the organism. Handicaps, as the term suggests, place a restrictive cost on the organisms that own them, and thus lower quality competitors experience a greater relative cost compared to their higher quality counterparts. In the common interest situation, it is beneficial to both sender and receiver to communicate honestly such that the benefit of the interaction is maximized. Signals are often honest, but there are exceptions. Prime examples of dishonest signals include the luminescent lure of the anglerfish, which is used to attract prey, or the mimicry of non-poisonous butterfly species, like the Batesian mimic Papilio polyxenes of the poisonous model Battus philenor. Although evolution should normally favor selection against the dishonest signal, in these cases it appears that the receiver would benefit more on average by accepting the signal. ------------------------------ End of alt.music.moxy-fruvous digest V14 #4739 **********************************************