From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #4696 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Tuesday, August 4 2020 Volume 14 : Number 4696 Today's Subjects: ----------------- Find affordable life insurance coverage thatās right for you ["Fidelity L] Flush Away Raw Fat ["Soup Ritua" ] Can Someone realy go From Zero to Millionaire in 45 Days? ["Overnight Mil] 14-Day Rapid Soup Diet ["Slimming Soup" ] Are You Ignoring These 4 Heart Attack Warning Signs? ["HeartHealthTrick.c] ---------------------------------------------------------------------- Date: Tue, 4 Aug 2020 06:02:10 -0400 From: "Fidelity Life" Subject: Find affordable life insurance coverage thatās right for you Find affordable life insurance coverage thatbs right for you http://smartfever.co/QB3rLL1ydsdSOUSqdTPCYFco9QTG1htUSZhsU1o3U1VnkITP http://smartfever.co/j6wTB4o7Dzl-gPc7tdPkJIC6iTy8vcbSf0CYfi5vQwAe6kQ Forms of insulation are felt or plastic sheeting, sometimes with a reflective surface, installed directly below the tiles or other material; synthetic foam batting laid above the ceiling and recycled paper products and other such materials that can be inserted or sprayed into roof cavities. So called Cool roofs are becoming increasingly popular, and in some cases are mandated by local codes. Cool roofs are defined as roofs with both high reflectivity and high thermal emittance. Poorly insulated and ventilated roofing can suffer from problems such as the formation of ice dams around the overhanging eaves in cold weather, causing water from melted snow on upper parts of the roof to penetrate the roofing material. Ice dams occur when heat escapes through the uppermost part of the roof, and the snow at those points melts, refreezing as it drips along the shingles, and collecting in the form of ice at the lower points. This can result in structural damage from stress, including the destruction of gutter and drainage systems. Drainage The primary job of most roofs is to keep out water. The large area of a roof repels a lot of water, which must be directed in some suitable way, so that it does not cause damage or inconvenience. Flat roof of adobe dwellings generally have a very slight slope. In a Middle Eastern country, where the roof may be used for recreation, it is often walled, and drainage holes must be provided to stop water from pooling and seeping through the porous roofing material. Similar problems, although on a very much larger scale, confront the builders of modern commercial properties which often have flat roofs. Because of the very large nature of such roofs, it is essential that the outer skin be of a highly impermeable material. Most industrial and commercial structures have conventional roofs of low pitch. In general, the pitch of the roof is proportional to the amount of precipitation. Houses in areas of low rainfall frequently have roofs of low pitch while those in areas of high rainfall and snow, have steep roofs. The longhouses of Papua New Guinea, for example, being roof-dominated architecture, the high roofs sweeping almost to the ground. The high steeply-pitched roofs of Germany and Holland are typical in regions of snowfall. In parts of North America such as Buffalo, USA or Montreal, Canada, there is a required minimum slope of 6 inches in 12 inches, a pitch of 30 degrees. There are regional building styles which contradict this trend, the stone roofs of the Alpine chalets being usually of gentler incline. These buildings tend to accumulate a large amount of snow on them, which is seen as a factor in their insulation. The pitch of the roof is in part determined by the roofing material available, a pitch of 3/12 or greater slope generally being covered with asphalt shingles, wood shake, corrugated steel, slate or tile. The water repelled by the roof during a rainstorm is potentially damaging to the building that the roof protects. If it runs down the walls, it may seep into the mortar or through panels. If it lies around the foundations it may cause seepage to the interior, rising damp or dry rot. For this reason most buildings have a system in place to protect the walls of a building from most of the roof water. Overhanging eaves are commonly employed for this purpose. Most modern roofs and many old ones have systems of valleys, gutters, waterspouts, waterheads and drainpipes to remove the water from the vicinity of the building. In many parts of the world, roofwater is collected and stored for domestic use. Areas prone to heavy snow benefit from a metal roof because their smooth surfaces shed the weight of snow more easily and resist the force of wind better than a wood shingle or a concrete tile roof. ------------------------------ Date: Tue, 4 Aug 2020 05:46:42 -0400 From: "Soup Ritua" Subject: Flush Away Raw Fat Flush Away Raw Fat http://easybeach.bid/-4o1kmysjnlPrJn0jMhGnt4xnGOaNS6DRnZ-fo6zxN34lgra http://easybeach.bid/wglmgBXIKvRuO9mW6iC4rfTribhoYEgQPpXfiFh5DkIG7ug Winds defined by an equilibrium of physical forces are used in the decomposition and analysis of wind profiles. They are useful for simplifying the atmospheric equations of motion and for making qualitative arguments about the horizontal and vertical distribution of winds. The geostrophic wind component is the result of the balance between Coriolis force and pressure gradient force. It flows parallel to isobars and approximates the flow above the atmospheric boundary layer in the midlatitudes. The thermal wind is the difference in the geostrophic wind between two levels in the atmosphere. It exists only in an atmosphere with horizontal temperature gradients. The ageostrophic wind component is the difference between actual and geostrophic wind, which is responsible for air "filling up" cyclones over time. The gradient wind is similar to the geostrophic wind but also includes centrifugal force (or centripetal acceleration). Measurement Cup-type anemometer with vertical axis, a sensor on a remote meteorological station An occluded mesocyclone tornado (Oklahoma, May 1999) Wind direction is usually expressed in terms of the direction from which it originates. For example, a northerly wind blows from the north to the south. Weather vanes pivot to indicate the direction of the wind. At airports, windsocks indicate wind direction, and can also be used to estimate wind speed by the angle of hang. Wind speed is measured by anemometers, most commonly using rotating cups or propellers. When a high measurement frequency is needed (such as in research applications), wind can be measured by the propagation speed of ultrasound signals or by the effect of ventilation on the resistance of a heated wire. Another type of anemometer uses pitot tubes that take advantage of the pressure differential between an inner tube and an outer tube that is exposed to the wind to determine the dynamic pressure, which is then used to compute the wind speed. Sustained wind speeds are reported globally at a 10 meters (33 ft) height and are averaged over a 10?minute time frame. The United States reports winds over a 1?minute average for tropical cyclones, and a 2?minute average within weather observations. India typically reports winds over a 3?minute average. Knowing the wind sampling average is important, as the value of a one-minute sustained wind is typically 14% greater than a ten-minute sustained wind. A short burst of high speed wind is termed a wind gust, one technical definition of a wind gust is: the maxima that exceed the lowest wind speed measured during a ten-minute time interval by 10 knots (5 m/s) for periods of seconds. A squall is an increase of the wind speed above a certain threshold, which lasts for a minute or more. To determine winds aloft, rawinsondes determine wind speed by GPS, radio navigation, or radar tracking of the probe. Alternatively, movement of the parent weather balloon position can be tracked from the ground visually using theodolites. Remote sensing techniques for wind include SODAR, Doppler lidars and radars, which can measure the Doppler shift of electromagnetic radiation scattered or reflected off suspended aerosols or molecules, and radiometers and radars can be used to measure the surface roughness of the ocean from space or airplanes. Ocean roughness can be used to estimate wind velocity close to the sea surface over oceans. Geostationary satellite imagery can be used to estimate the winds throughout the atmosphere based upon how far clouds move from one image to the next. Wind engineering describes the study of the effects of the wind on the built environment, including buildings, bridges and other man-made objects. ------------------------------ Date: Tue, 4 Aug 2020 06:21:54 -0400 From: "Overnight Millionaire" Subject: Can Someone realy go From Zero to Millionaire in 45 Days? Can Someone realy go From Zero to Millionaire in 45 Days? http://easybeach.bid/OF33trtQxEiFEtbbgnO-xoV1WUhmRbIrWxk7MIMsItLcItMj http://easybeach.bid/qVdAYowpa9bwCG5PQ8lM1eFE1OsDxom2Z6UW2uT7yl1iySll Erosion can be the result of material movement by the wind. There are two main effects. First, wind causes small particles to be lifted and therefore moved to another region. This is called deflation. Second, these suspended particles may impact on solid objects causing erosion by abrasion (ecological succession). Wind erosion generally occurs in areas with little or no vegetation, often in areas where there is insufficient rainfall to support vegetation. An example is the formation of sand dunes, on a beach or in a desert. Loess is a homogeneous, typically nonstratified, porous, friable, slightly coherent, often calcareous, fine-grained, silty, pale yellow or buff, windblown (Aeolian) sediment. It generally occurs as a widespread blanket deposit that covers areas of hundreds of square kilometers and tens of meters thick. Loess often stands in either steep or vertical faces. Loess tends to develop into highly rich soils. Under appropriate climatic conditions, areas with loess are among the most agriculturally productive in the world. Loess deposits are geologically unstable by nature, and will erode very readily. Therefore, windbreaks (such as big trees and bushes) are often planted by farmers to reduce the wind erosion of loess. Desert dust migration During mid-summer (July in the northern hemisphere), the westward-moving trade winds south of the northward-moving subtropical ridge expand northwestward from the Caribbean into southeastern North America. When dust from the Sahara moving around the southern periphery of the ridge within the belt of trade winds moves over land, rainfall is suppressed and the sky changes from a blue to a white appearance, which leads to an increase in red sunsets. Its presence negatively impacts air quality by adding to the count of airborne particulates. Over 50% of the African dust that reaches the United States affects Florida. Since 1970, dust outbreaks have worsened because of periods of drought in Africa. There is a large variability in the dust transport to the Caribbean and Florida from year to year. Dust events have been linked to a decline in the health of coral reefs across the Caribbean and Florida, primarily since the 1970s. Similar dust plumes originate in the Gobi Desert, which combined with pollutants, spread large distances downwind, or eastward, into North America. There are local names for winds associated with sand and dust storms. The Calima carries dust on southeast winds into the Canary islands. The Harmattan carries dust during the winter into the Gulf of Guinea. The Sirocco brings dust from north Africa into southern Europe because of the movement of extratropical cyclones through the Mediterranean. Spring storm systems moving across the eastern Mediterranean Sea cause dust to carry across Egypt and the Arabian peninsula, which are locally known as Khamsin. The Shamal is caused by cold fronts lifting dust into the atmosphere for days at a time ------------------------------ Date: Tue, 4 Aug 2020 05:22:14 -0400 From: "Slimming Soup" Subject: 14-Day Rapid Soup Diet 14-Day Rapid Soup Diet http://easybeach.bid/VpckdEOiwTs00NF_hHZj7yNfGlB9LiHh5wp-amSq9C9elAM7 http://easybeach.bid/9EmUuVbv0OTWHDJSkGiQVdyXBpWcVZ5_RvDNnnpYFj60irjX Winds defined by an equilibrium of physical forces are used in the decomposition and analysis of wind profiles. They are useful for simplifying the atmospheric equations of motion and for making qualitative arguments about the horizontal and vertical distribution of winds. The geostrophic wind component is the result of the balance between Coriolis force and pressure gradient force. It flows parallel to isobars and approximates the flow above the atmospheric boundary layer in the midlatitudes. The thermal wind is the difference in the geostrophic wind between two levels in the atmosphere. It exists only in an atmosphere with horizontal temperature gradients. The ageostrophic wind component is the difference between actual and geostrophic wind, which is responsible for air "filling up" cyclones over time. The gradient wind is similar to the geostrophic wind but also includes centrifugal force (or centripetal acceleration). Measurement Cup-type anemometer with vertical axis, a sensor on a remote meteorological station An occluded mesocyclone tornado (Oklahoma, May 1999) Wind direction is usually expressed in terms of the direction from which it originates. For example, a northerly wind blows from the north to the south. Weather vanes pivot to indicate the direction of the wind. At airports, windsocks indicate wind direction, and can also be used to estimate wind speed by the angle of hang. Wind speed is measured by anemometers, most commonly using rotating cups or propellers. When a high measurement frequency is needed (such as in research applications), wind can be measured by the propagation speed of ultrasound signals or by the effect of ventilation on the resistance of a heated wire. Another type of anemometer uses pitot tubes that take advantage of the pressure differential between an inner tube and an outer tube that is exposed to the wind to determine the dynamic pressure, which is then used to compute the wind speed. Sustained wind speeds are reported globally at a 10 meters (33 ft) height and are averaged over a 10?minute time frame. The United States reports winds over a 1?minute average for tropical cyclones, and a 2?minute average within weather observations. India typically reports winds over a 3?minute average. Knowing the wind sampling average is important, as the value of a one-minute sustained wind is typically 14% greater than a ten-minute sustained wind. A short burst of high speed wind is termed a wind gust, one technical definition of a wind gust is: the maxima that exceed the lowest wind speed measured during a ten-minute time interval by 10 knots (5 m/s) for periods of seconds. A squall is an increase of the wind speed above a certain threshold, which lasts for a minute or more. To determine winds aloft, rawinsondes determine wind speed by GPS, radio navigation, or radar tracking of the probe. Alternatively, movement of the parent weather balloon position can be tracked from the ground visually using theodolites. Remote sensing techniques for wind include SODAR, Doppler lidars and radars, which can measure the Doppler shift of electromagnetic radiation scattered or reflected off suspended aerosols or molecules, and radiometers and radars can be used to measure the surface roughness of the ocean from space or airplanes. Ocean roughness can be used to estimate wind velocity close to the sea surface over oceans. Geostationary satellite imagery can be used to estimate the winds throughout the atmosphere based upon how far clouds move from one image to the next. Wind engineering describes the study of the effects of the wind on the built environment, including buildings, bridges and other man-made objects. ------------------------------ Date: Tue, 4 Aug 2020 06:55:50 -0400 From: "HeartHealthTrick.com" Subject: Are You Ignoring These 4 Heart Attack Warning Signs? Are You Ignoring These 4 Heart Attack Warning Signs? http://smartfever.co/zcBT_tEc2e_SM9sKcc2T09gXuyJ8SIXY7bBz_wg0kQJq0M8 http://smartfever.co/rGClcSC_OBaf3PFGMPgYPn5tlOo3_UTa5yNjxZ7syGwSmrsg Over elevated surfaces, heating of the ground exceeds the heating of the surrounding air at the same altitude above sea level, creating an associated thermal low over the terrain and enhancing any thermal lows that would have otherwise existed, and changing the wind circulation of the region. In areas where there is rugged topography that significantly interrupts the environmental wind flow, the wind circulation between mountains and valleys is the most important contributor to the prevailing winds. Hills and valleys substantially distort the airflow by increasing friction between the atmosphere and landmass by acting as a physical block to the flow, deflecting the wind parallel to the range just upstream of the topography, which is known as a barrier jet. This barrier jet can increase the low-level wind by 45%. Wind direction also changes because of the contour of the land. If there is a pass in the mountain range, winds will rush through the pass with considerable speed because of the Bernoulli principle that describes an inverse relationship between speed and pressure. The airflow can remain turbulent and erratic for some distance downwind into the flatter countryside. These conditions are dangerous to ascending and descending airplanes. Cool winds accelerating through mountain gaps have been given regional names. In Central America, examples include the Papagayo wind, the Panama wind, and the Tehuano wind. In Europe, similar winds are known as the Bora, Tramontane, and Mistral. When these winds blow over open waters, they increase mixing of the upper layers of the ocean that elevates cool, nutrient rich waters to the surface, which leads to increased marine life. In mountainous areas, local distortion of the airflow becomes severe. Jagged terrain combines to produce unpredictable flow patterns and turbulence, such as rotors, which can be topped by lenticular clouds. Strong updrafts, downdrafts, and eddies develop as the air flows over hills and down valleys. Orographic precipitation occurs on the windward side of mountains and is caused by the rising air motion of a large-scale flow of moist air across the mountain ridge, also known as upslope flow, resulting in adiabatic cooling and condensation. In mountainous parts of the world subjected to relatively consistent winds (for example, the trade winds), a more moist climate usually prevails on the windward side of a mountain than on the leeward or downwind side. Moisture is removed by orographic lift, leaving drier air on the descending and generally warming, leeward side where a rain shadow is observed. Winds that flow over mountains down into lower elevations are known as downslope winds. These winds are warm and dry. In Europe downwind of the Alps, they are known as foehn. In Poland, an example is the halny wiatr. In Argentina, the local name for down sloped winds is zonda. In Java, the local name for such winds is koembang. In New Zealand, they are known as the Nor'west arch, and are accompanied by the cloud formation they are named after that has inspired artwork over the years. In the Great Plains of the United States, these winds are known as a chinook. Downslope winds also occur in the foothills of the Appalachian mountains of the United States, and they can be as strong as other downslope winds ------------------------------ End of alt.music.moxy-fruvous digest V14 #4696 **********************************************