From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #4626 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Saturday, July 25 2020 Volume 14 : Number 4626 Today's Subjects: ----------------- Speak any language in seconds, Perfect for traveling! ["Smart Translator"] Get ahead of Fall Cleaning | $250 off the #1 rated Gutter Guard ["LeafFil] ---------------------------------------------------------------------- Date: Fri, 24 Jul 2020 06:56:49 -0400 From: "Smart Translator" Subject: Speak any language in seconds, Perfect for traveling! This email must be viewed in HTML mode. ------------------------------ Date: Fri, 24 Jul 2020 11:08:28 -0400 From: "LeafFilter Partner" Subject: Get ahead of Fall Cleaning | $250 off the #1 rated Gutter Guard Get ahead of Fall Cleaning | $250 off the #1 rated Gutter Guard http://safeliver.guru/DzejdJT_F8hc-Rt3uDuhAHPEDs44752pXRBQBR1FvoWicgSu http://safeliver.guru/eJitvqgwBm1mLa5D6h26AAUV_wDoxbUVGrzF8VtBRpxcQAhO Digital TV became practically feasible in the early 1990s due to a major technological development, discrete cosine transform (DCT) video compression. DCT coding is a lossy compression technique that was first proposed for image compression by Nasir Ahmed in 1972, and was later adapted into a motion-compensated DCT video coding algorithm, for video coding standards such as the H.26x formats from 1988 onwards and the MPEG formats from 1991 onwards. Motion-compensated DCT video compression significantly reduced the amount of bandwidth required for a digital TV signal. DCT coding compressed down the bandwidth requirements of digital television signals to about 34 Mpps bit-rate for SDTV and around 70b140 Mbit/s for HDTV while maintaining near-studio-quality transmission, making digital television a practical reality in the 1990s. A digital TV service was proposed in 1986 by Nippon Telegraph and Telephone (NTT) and the Ministry of Posts and Telecommunication (MPT) in Japan, where there were plans to develop an "Integrated Network System" service. However, it was not possible to practically implement such a digital TV service until the adoption of DCT video compression technology made it possible in the early 1990s. In the mid-1980s, as Japanese consumer electronics firms forged ahead with the development of HDTV technology, the MUSE analog format proposed by NHK, a Japanese company, was seen as a pacesetter that threatened to eclipse U.S. electronics companies' technologies. Until June 1990, the Japanese MUSE standard, based on an analog system, was the front-runner among the more than 23 different technical concepts under consideration. Then, an American company, General Instrument, demonstrated the feasibility of a digital television signal. This breakthrough was of such significance that the FCC was persuaded to delay its decision on an ATV standard until a digitally based standard could be developed. In March 1990, when it became clear that a digital standard was feasible, the FCC made a number of critical decisions. First, the Commission declared that the new ATV standard must be more than an enhanced analog signal, but be able to provide a genuine HDTV signal with at least twice the resolution of existing television images.(7) Then, to ensure that viewers who did not wish to buy a new digital television set could continue to receive conventional television broadcasts, it dictated that the new ATV standard must be capable of being "simulcast" on different channels.(8)The new ATV standard also allowed the new DTV signal to be based on entirely new design principles. Although incompatible with the existing NTSC standard, the new DTV standard would be able to incorporate many improvements. The final standards adopted by the FCC did not require a single standard for scanning formats, aspect ratios, or lines of resolution. This compromise resulted from a dispute between the consumer electronics industry (joined by some broadcasters) and the computer industry (joined by the film industry and some public interest groups) over which of the two scanning processesbinterlaced or progressivebwould be best suited for the newer digital HDTV compatible display devices. Interlaced scanning, which had been specifically designed for older analogue CRT display technologies, scans even-numbered lines first, then odd-numbered ones. In fact, interlaced scanning can be looked at as the first video compression model as it was partly designed in the 1940s to double the image resolution to exceed the limitations of the television broadcast bandwidth. Another reason for its adoption was to limit the flickering on early CRT screens whose phosphor coated screens could only retain the image from the electron scanning gun for a relatively short duration. However interlaced scanning does not work as efficiently on newer display devices such as Liquid-crystal (LCD), for example, which are better suited to a more frequent progressive ------------------------------ End of alt.music.moxy-fruvous digest V14 #4626 **********************************************