From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #4619 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Thursday, July 23 2020 Volume 14 : Number 4619 Today's Subjects: ----------------- Only qualified Patriots get this CCW certificate ["CCW Certificate" Subject: Only qualified Patriots get this CCW certificate Only qualified Patriots get this CCW certificate http://countywide.buzz/COfMK8Ao39LpS1Qbg3HJo1A36lT0_Ga_g1w_EvkiqsMJ70Kd http://countywide.buzz/to2ByfIlKRSCTaacHCRLgKIzXy6BJR6JfHNKiwwSdcY_WScz Model calibration is achieved by adjusting any available parameters in order to adjust how the model operates and simulates the process. For example, in traffic simulation, typical parameters include look-ahead distance, car-following sensitivity, discharge headway, and start-up lost time. These parameters influence driver behavior such as when and how long it takes a driver to change lanes, how much distance a driver leaves between his car and the car in front of it, and how quickly a driver starts to accelerate through an intersection. Adjusting these parameters has a direct effect on the amount of traffic volume that can traverse through the modeled roadway network by making the drivers more or less aggressive. These are examples of calibration parameters that can be fine-tuned to match characteristics observed in the field at the study location. Most traffic models have typical default values but they may need to be adjusted to better match the driver behavior at the specific location being studied. Model verification is achieved by obtaining output data from the model and comparing them to what is expected from the input data. For example, in traffic simulation, traffic volume can be verified to ensure that actual volume throughput in the model is reasonably close to traffic volumes input into the model. Ten percent is a typical threshold used in traffic simulation to determine if output volumes are reasonably close to input volumes. Simulation models handle model inputs in different ways so traffic that enters the network, for example, may or may not reach its desired destination. Additionally, traffic that wants to enter the network may not be able to, if congestion exists. This is why model verification is a very important part of the modeling process. The final step is to validate the model by comparing the results with what is expected based on historical data from the study area. Ideally, the model should produce similar results to what has happened historically. This is typically verified by nothing more than quoting the R-squared statistic from the fit. This statistic measures the fraction of variability that is accounted for by the model. A high R-squared value does not necessarily mean the model fits the data well. Another tool used to validate models is graphical residual analysis. If model output values drastically differ from historical values, it probably means there is an error in the model. Before using the model as a base to produce additional models, it is important to verify it for different scenarios to ensure that each one is accurate. If the outputs do not reasonably match historic values during the validation process, the model should be reviewed and updated to produce results more in line with expectations. It is an iterative process that helps to produce more realistic models. Validating traffic simulation models requires comparing traffic estimated by the model to observed traffic on the roadway and transit systems. Initial comparisons are for trip interchanges between quadrants, sectors, or other large areas of interest. The next step is to compare traffic estimated by the models to traffic counts, including transit ridership, crossing contrived barriers in the study area. These are typically called screenlines, cutlines, and cordon lines and may be imaginary or actual physical barriers. Cordon lines surround particular areas such as a city's central business district or other major activity centers. Transit ridership estimates are commonly validated by comparing them to actual patronage crossing cordon lines around the central business district. Three sources of error can cause weak correlation during calibration: input error, model error, and parameter error. In general, input error and parameter error can be adjusted easily by the user. Model error however is caused by the methodology used in the model and may not be as easy to fix. Simulation models are typically built using several different modeling theories that can produce conflicting results. Some models are more generalized while others are more detailed. If model error occurs as a result, in may be necessary to adjust the model methodology to make results more consistent. ------------------------------ End of alt.music.moxy-fruvous digest V14 #4619 **********************************************