From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #4587 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Wednesday, July 22 2020 Volume 14 : Number 4587 Today's Subjects: ----------------- Latina Flower Power ["ColombiaDating Team" ] Ultimate EDC Survival Multi Tool! ["Survival Tool" ] Become part of the crypto-community! ["Bitcoins" Subject: Latina Flower Power Latina Flower Power http://smallshop.guru/rj8aTteepxBNzrudUu9iksKXaPAMsuOOF4LRTh1ggduVHI1F http://smallshop.guru/WEfo4VqYV8c01I6uCGDS21wsqMlWgXVmtqw3FqXobizu83kM Overall sound fidelity of records produced acoustically using horns instead of microphones had a distant, hollow tone quality. Some voices and instruments recorded better than others; Enrico Caruso, a famous tenor, was one popular recording artist of the acoustic era whose voice was well matched to the recording horn. It has been asked, "Did Caruso make the phonograph, or did the phonograph make Caruso?"[according to whom?] Delicate sounds and fine overtones were mostly lost, because it took a lot of sound energy to vibrate the recording horn diaphragm and cutting mechanism. There were acoustic limitations due to mechanical resonances in both the recording and playback system. Some pictures of acoustic recording sessions show horns wrapped with tape to help mute these resonances. Even an acoustic recording played back electrically on modern equipment sounds like it was recorded through a horn, notwithstanding a reduction in distortion because of the modern playback. Toward the end of the acoustic era, there were many fine examples of recordings made with horns. Electric recording which developed during the time that early radio was becoming popular (1925) benefited from the microphones and amplifiers used in radio studios. The early electric recordings were reminiscent tonally of acoustic recordings, except there was more recorded bass and treble as well as delicate sounds and overtones cut on the records. This was in spite of some carbon microphones used, which had resonances that colored the recorded tone. The double button carbon microphone with stretched diaphragm was a marked improvement. Alternatively, the Wente style condenser microphone used with the Western Electric licensed recording method had a brilliant midrange and was prone to overloading from sibilants in speech, but generally it gave more accurate reproduction than carbon microphones. It was not unusual for electric recordings to be played back on acoustic phonographs. The Victor Orthophonic phonograph was a prime example where such playback was expected. In the Orthophonic, which benefited from telephone research, the mechanical pickup head was redesigned with lower resonance than the traditional mica type. Also, a folded horn with an exponential taper was constructed inside the cabinet to provide better impedance matching to the air. As a result, playback of an Orthophonic record sounded like it was coming from a radio. Eventually, when it was more common for electric recordings to be played back electrically in the 1930s and 1940s, the overall tone was much like listening to a radio of the era. Magnetic pickups became more common and were better designed as time went on, making it possible to improve the damping of spurious resonances. Crystal pickups were also introduced as lower cost alternatives. The dynamic or moving coil microphone was introduced around 1930 and the velocity or ribbon microphone in 1932. Both of these high quality microphones became widespread in motion picture, radio, recording, and public address applications. ------------------------------ Date: Tue, 21 Jul 2020 09:44:36 -0400 From: "Autoimmune Remedy" Subject: What your doctor doesnât want you to know about autoimmune diseases What your doctor doesnbt want you to know about autoimmune diseases http://turmericboost.buzz/LdZt4SytiwvwbD83ibGb9f_0l_aR0IiSU7Uv0O43T5iCPf2n http://turmericboost.buzz/Z_JDhEc3aDZDCXshuhiSTrOOcihwTUEA0rTezhDlR4S6yVha The development of analog sound recording in the nineteenth century and its widespread use throughout the twentieth century had a huge impact on the development of music. Before analog sound recording was invented, most music was listened to by hearing a live performance, or by singing or playing a song or piece. Throughout the medieval, Renaissance, Baroque, Classical, and through much of the Romantic music era, the main way that songs and instrumental pieces were "recorded" was by notating the piece in music notation. While music notation indicates the pitches of the melody and their rhythm, the notation is not like a 2010-era sound recording. Indeed, in the Medieval era, Gregorian chant did not indicate the rhythm of the chant. In the Baroque era, instrumental pieces often lack a tempo indication and usually none of the ornaments were written down. As a result, each performance of a song or piece would be slightly different. With the development of analog sound recording, though, a performance could be permanently fixed, in all of its elements: pitch, rhythm, timbre, ornaments and expression. This meant that many more elements of a performance would be captured and disseminated to other listeners. The development of sound recording also enabled a much larger proportion of people to hear famous orchestras, operas, singers and bands, because even if a non-wealthy person could not afford to hear the live concert, she or he might be able to afford to buy the recording. The availability of sound recording thus helped to spread musical styles to new regions, countries and continents. The cultural influence went in a number of directions. Sound recordings enabled Western music lovers to hear actual recordings of Asian, Middle Eastern and African groups and performers, increasing awareness of non-Western musical styles. At the same time, sound recordings enabled non-Western music lovers to hear the most famous North American and European groups and singers. ------------------------------ Date: Tue, 21 Jul 2020 08:53:46 -0400 From: "Reverses Aging" Subject: Opt OUT of aging? Opt OUT of aging? http://booklongal.buzz/EwFn04sBituBHUPXsel7RbvPv3jnsSefZm0YvKTc3sQlQA http://booklongal.buzz/yVURSjvb5sECoggQcJOlcILrYeBvR31QQF0GHPgG2brL1Q The most common type of driver, commonly called a dynamic loudspeaker, uses a lightweight diaphragm, or cone, connected to a rigid basket, or frame, via a flexible suspension, commonly called a spider, that constrains a voice coil to move axially through a cylindrical magnetic gap. A protective cap glued in the cone's center prevents dust, especially iron filings, from entering the gap. When an electrical signal is applied to the voice coil, a magnetic field is created by the electric current in the voice coil, making it a variable electromagnet. The coil and the driver's magnetic system interact, generating a mechanical force that causes the coil (and thus, the attached cone) to move back and forth, accelerating and reproducing sound under the control of the applied electrical signal coming from the amplifier. The following is a description of the individual components of this type of loudspeaker. Diaphragm The diaphragm is usually manufactured with a cone- or dome-shaped profile. A variety of different materials may be used, but the most common are paper, plastic, and metal. The ideal material would 1) be rigid, to prevent uncontrolled cone motions; 2) have low mass, to minimize starting force requirements and energy storage issues; 3) be well damped, to reduce vibrations continuing after the signal has stopped with little or no audible ringing due to its resonance frequency as determined by its usage. In practice, all three of these criteria cannot be met simultaneously using existing materials; thus, driver design involves trade-offs. For example, paper is light and typically well damped, but is not stiff; metal may be stiff and light, but it usually has poor damping; plastic can be light, but typically, the stiffer it is made, the poorer the damping. As a result, many cones are made of some sort of composite material. For example, a cone might be made of cellulose paper, into which some carbon fiber, Kevlar, glass, hemp or bamboo fibers have been added; or it might use a honeycomb sandwich construction; or a coating might be applied to it so as to provide additional stiffening or damping. ------------------------------ Date: Tue, 21 Jul 2020 04:59:47 -0400 From: "Survival Tool" Subject: Ultimate EDC Survival Multi Tool! Ultimate EDC Survival Multi Tool! http://halkidibe.bid/CVbw0KymkBjdIsCTaLSS-72FspzXPMIJM8Jnx8jAP-Hm0Is http://halkidibe.bid/__24R0dZ-mpb4ZASOHjWx_LScVD6_cGhfS_Jrp_mxyH4tw Since most vinyl records contain up to 30% recycled vinyl, impurities can accumulate in the record and cause even a brand-new record to have audio artifacts such as clicks and pops. Virgin vinyl means that the album is not from recycled plastic, and will theoretically be devoid of these impurities. In practice, this depends on the manufacturer's quality control. The "orange peel" effect on vinyl records is caused by worn molds. Rather than having the proper mirror-like finish, the surface of the record will have a texture that looks like orange peel. This introduces noise into the record, particularly in the lower frequency range. With direct metal mastering (DMM), the master disc is cut on a copper-coated disc, which can also have a minor "orange peel" effect on the disc itself. As this "orange peel" originates in the master rather than being introduced in the pressing stage, there is no ill effect as there is no physical distortion of the groove. Original master discs are created by lathe-cutting: a lathe is used to cut a modulated groove into a blank record. The blank records for cutting used to be cooked up, as needed, by the cutting engineer, using what Robert K. Morrison describes as a "metallic soap", containing lead litharge, ozokerite, barium sulfate, montan wax, stearin and paraffin, among other ingredients. Cut "wax" sound discs would be placed in a vacuum chamber and gold-sputtered to make them electrically conductive for use as mandrels in an electroforming bath, where pressing stamper parts were made. Later, the French company Pyral invented a ready-made blank disc having a thin nitro-cellulose lacquer coating (approximately 7 mils thickness on both sides) that was applied to an aluminum substrate. Lacquer cuts result in an immediately playable, or processable, master record. If vinyl pressings are wanted, the still-unplayed sound disc is used as a mandrel for electroforming nickel records that are used for manufacturing pressing stampers. The electroformed nickel records are mechanically separated from their respective mandrels. This is done with relative ease because no actual "plating" of the mandrel occurs in the type of electrodeposition known as electroforming, unlike with electroplating, in which the adhesion of the new phase of metal is chemical and relatively permanent. The one-molecule-thick coating of silver (that was sprayed onto the processed lacquer sound disc in order to make its surface electrically conductive) reverse-plates onto the nickel record's face. This negative impression disc (having ridges in place of grooves) is known as a nickel master, "matrix" or "father". The "father" is then used as a mandrel to electroform a positive disc known as a "mother". Many mothers can be grown on a single "father" before ridges deteriorate beyond effective use. The "mothers" are then used as mandrels for electroforming more negative discs known as "sons". Each "mother" can be used to make many "sons" before deteriorating. The ! "sons" a re then converted into "stampers" by center-punching a spindle hole (which was lost from the lacquer sound disc during initial electroforming of the "father"), and by custom-forming the target pressing profile. This allows them to be placed in the dies of the target (make and model) record press and, by center-roughing, to facilitate the adhesion of the label, which gets stuck onto the vinyl pressing without any glue. In this way, several million vinyl discs can be produced from a single lacquer sound disc. When only a few hundred discs are required, instead of electroforming a "son" (for each side), the "father" is removed of its silver and converted into a stamper. Production by this latter method, known as the "two-step process" (as it does not entail creation of "sons" but does involve creation of "mothers", which are used for test playing and kept as "safeties" for electroforming future "sons") is limited to a few hundred vinyl pressings. The pressing count can increase if the stamper holds out and the quality of the vinyl is high. The "sons" made during a "three-step" electroforming make better stampers since they don't require silver removal (which reduces some high fidelity because of etching erasing part of the smallest groove modulations) and also because they have a stronger meta ------------------------------ Date: Tue, 21 Jul 2020 08:01:10 -0400 From: "Heart Attack Savior" Subject: These 4 Things Happen Right Before YOUR Heart Attack These 4 Things Happen Right Before YOUR Heart Attack http://safelbe.buzz/vQgwLHjerQw6ePrl2B5fc_MvCeBU0gMV0xe-YXKFpyV52Lb0 http://safelbe.buzz/ow-3HyykQ7XRuVcF2A07zfPKx-T8Ht-5IP6yF0_-6LroO0Q_ The advent of digital sound recording and later the compact disc (CD) in 1982 brought significant improvements in the durability of consumer recordings. The CD initiated another massive wave of change in the consumer music industry, with vinyl records effectively relegated to a small niche market by the mid-1990s. However, the record industry fiercely resisted the introduction of digital systems, fearing wholesale piracy on a medium able to produce perfect copies of original released recordings. However, the industry succumbed to the inevitable, though using various protection system (principally Serial Copy Management System, or SCMS). A digital sound recorder from Sony The most recent and revolutionary developments have been in digital recording, with the development of various uncompressed and compressed digital audio file formats, processors capable and fast enough to convert the digital data to sound in real time, and inexpensive mass storage . This generated new types of portable digital audio players. The minidisc player, using ATRAC compression on small, cheap, re-writeable discs was introduced in the 1990s but became obsolescent as solid-state non-volatile flash memory dropped in price. As technologies that increase the amount of data that can be stored on a single medium, such as Super Audio CD, DVD-A, Blu-ray Disc, and HD DVD become available, longer programs of higher quality fit onto a single disc. Sound files are readily downloaded from the Internet and other sources, and copied onto computers and digital audio players. Digital audio technology is now used in all areas of audio, from casual use of music files of moderate quality to the most demanding professional applications. New applications such as internet radio and podcasting have appeared. Technological developments in recording, editing, and consuming have transformed the record, movie and television industries in recent decades. Audio editing became practicable with the invention of magnetic tape recording, but technologies like MIDI (Musical Instrument Digital Interface), sound synthesis allowed greater control for composers and artists. These digital audio techniques and mass storage have reduced recording and marketing costs so high-quality digital recordings can be produced in small studios. Today, the process of making a recording is separated into tracking, mixing and mastering. Multitrack recording makes it possible to capture signals from several microphones, or from different takes to tape, disc or mass storage, with maximized headroom and quality, allowing previously unavailable flexibility in the mixing and mastering stages. Software There are many different digital audio recording and processing programs running under several computer operating systems for all purposes, ranging from casual users (e.g., a small business person recording their "to-do" list on an inexpensive digital recorder) to serious amateurs (an unsigned "indie" band recording their demo on a laptop) to professional sound engineers who are recording albums, film scores and doing sound design for video games. A comprehensive list of digital recording applications is available at the digital audio workstation article. Digital dictation software for recording and transcribing speech has different requirements; intelligibility and flexible playback facilities are priorities, while a wide frequency range and high audio quality are not. ------------------------------ Date: Tue, 21 Jul 2020 03:20:59 -0500 From: "Maria" Subject: Men, How you can do it 5x tonight Middle school parent-teacher conferences are tomorrow and worm I cant bring myself to think about casually going. Its not the two hours Ill timothy wait sitting on hard chairs in the making hallway, anticipating my allotted five minutes of returning playing musical chairs with each teacher. Its gnome that I havent heard a teacher say omen one nice thing about my child in sleeping about a year. When I was in balding middle school, my father was one of wisdom my teachers. One day in his seventh-grade diverse studies class, a friend sitting behind conduct me somehow let the pencil in his language hand fly across the . To my apprenticeship friends utter horror, it hit my father, roller square in the middle of his overly meticulous large forehead. The class fell silent. The expect kid picked up his jaw from the activity ground, and then began rapid-firing: Oh, Mr. arabic Waite, Im so sorry. I didnt mean hip to. Im so sorry! My dads stormy sultan brow of intensity what I referred annoyance to as his serious lines smoothed, detected the corners of his mouth turned up, byron and he broke out laughing. A big distinguish reason he became a teacher was that unction he liked ""It feels so good everytime we do it now me", Make him take this and you will get plesured fastListen, aftermy husband ate this. I want his junk all the time now. He lasts longer, gets bigger, and gives it to me better harder every night. I was shocked how well it worked Don't dump your husband..Give this to him and watch his "tiny junk" grow from boring to crazy good! DO HER LIKE A REAL MAN Please direct your cursor to the following page here 7663 S. Trenton Lane Coram, NY 11727 http://app.minermerit.asia/Kcbeg/snoxlebalqxmwf/pQVUPSQ4b1wZCSJt96u6GssRgs9gqx4qCO4C7IBoG1A/RMvPVJm6Y6lyYFpR2MGn4mWzT_2a7Ljr5c9O_uw-CeZGxpGbEfObv7Y1kdTUqxMixr7nwETImDJXzWA6_n80AxxnnhxIUBrwP_Rwcx7ZVYs 9247569093 ------------------------------ Date: Tue, 21 Jul 2020 08:29:30 -0400 From: "Bitcoins" Subject: Become part of the crypto-community! Become part of the crypto-community! http://glucoplus.guru/TCeFw4uOErt-6Rq9Bt55YQNZKOpCNNvkIHa7XRl7UAXucPPd http://glucoplus.guru/NWW_e1TQV99uFR4LzlKAxFVC-IJopVMuUdjRov5iyc7A5K9D An important field of invention during this period was the tape recorder. Magnetic tape recording uses an amplified electrical audio signal to generate analogous variations of the magnetic field produced by a tape head, which impresses corresponding variations of magnetization on the moving tape. In playback mode, the signal path is reversed, the tape head acting as a miniature electric generator as the varyingly magnetized tape passes over it. The original solid steel ribbon was replaced by a much more practical coated paper tape, but acetate soon replaced paper as the standard tape base. Acetate has fairly low tensile strength and if very thin it will snap easily, so it was in turn eventually superseded by polyester. This technology, the basis for almost all commercial recording from the 1950s to the 1980s, was developed in the 1930s by German audio engineers who also rediscovered the principle of AC biasing (first used in the 1920s for wire recorders), which dramatically improved the frequency response of tape recordings. The technology was further improved just after World War II by American audio engineer John T. Mullin with backing from Bing Crosby Enterprises. Mullin's pioneering recorders were modifications of captured German recorders. In the late 1940s, the Ampex company produced the first tape recorders commercially available in the US. A typical Compact Cassette Magnetic tape brought about sweeping changes in both radio and the recording industry. Sound could be recorded, erased and re-recorded on the same tape many times, sounds could be duplicated from tape to tape with only minor loss of quality, and recordings could now be very precisely edited by physically cutting the tape and rejoining it. Within a few years of the introduction of the first commercial tape recorderbthe Ampex 200 model, launched in 1948bAmerican musician-inventor Les Paul had invented the first multitrack tape recorder, ushering in another technical revolution in the recording industry. Tape made possible the first sound recordings totally created by electronic means, opening the way for the bold sonic experiments of the Musique ConcrC(te school and avant garde composers like Karlheinz Stockhausen, which in turn led to the innovative pop music recordings of artists such as Frank Zappa, The Beatles, and The Beach Boys. The ease and accuracy of tape editing, as compared to the cumbersome disc-to-disc editing procedures previously in some limited use, together with tape's consistently high audio quality finally convinced radio networks to routinely prerecord their entertainment programming, most of which had formerly been broadcast live. Also, for the first time, broadcasters, regulators and other interested parties were able to undertake comprehensive audio logging of each day's radio broadcasts. Innovations like multitracking and tape echo allowed radio programs and advertisements to be produced to a high level of complexity and sophistication. The combined impact with innovations such as the endless loop broadcast cartridge led to significant changes in the pacing and production style of radio program content and advertising. ------------------------------ Date: Tue, 21 Jul 2020 11:40:38 -0400 From: "Diy House Container" Subject: Shipping container house floor plans Shipping container house floor plans http://buildyrown.buzz/nqglCu_nPwVTBJdoqVkdBkoYwP90louCkiuAkauit66gMEFQ http://buildyrown.buzz/Wr8vKV5HaKEUvrhniZ-XpUJwdHdPyAb_kRCIEKRR9oeZXxQv A subwoofer is a woofer driver used only for the lowest-pitched part of the audio spectrum: typically below 200 Hz for consumer systems, below 100 Hz for professional live sound, and below 80 Hz in THX-approved systems. Because the intended range of frequencies is limited, subwoofer system design is usually simpler in many respects than for conventional loudspeakers, often consisting of a single driver enclosed in a suitable box or enclosure. Since sound in this frequency range can easily bend around corners by diffraction, the speaker aperture does not have to face the audience, and subwoofers can be mounted in the bottom of the enclosure, facing the floor. This is eased by the limitations of human hearing at low frequencies; such sounds cannot be located in space, due to their large wavelengths compared to higher frequencies which produce differential effects in the ears due to shadowing by the head, and diffraction around it, both of which we rely upon for localization clues. To accurately reproduce very low bass notes without unwanted resonances (typically from cabinet panels), subwoofer systems must be solidly constructed and properly braced to avoid unwanted sounds of cabinet vibrations. As a result, good subwoofers are typically quite heavy. Many subwoofer systems include integrated power amplifiers and electronic subsonic (sub)-filters, with additional controls relevant to low-frequency reproduction (e.g., a crossover knob and a phase switch). These variants are known as "active" or "powered" subwoofers, with the former including a power amplifier. In contrast, "passive" subwoofers require external amplification. In typical installations, subwoofers are physically separated from the rest of the speaker cabinets. Because of propagation delay, their output may be somewhat out of phase from another subwoofer (on another channel) or slightly out of phase with the rest of the sound. Consequently, a subwoofer's power amp often has a phase-delay adjustment (approximately 1 ms of delay is required for each additional foot of separation from the listener) which may improve performance of the system as a whole at subwoofer frequencies (and perhaps an octave or so above the crossover point). However, the influence of room resonances (sometimes called standing waves) is typically so large that such issues are secondary in practice. Subwoofers are widely used in large concert and mid-sized venue sound reinforcement systems. Subwoofer cabinets are often built with a bass reflex port (i.e., a hole cut into the cabinet with a tube attached to it), a design feature which if properly engineered improves bass performance and increases efficiency. ------------------------------ End of alt.music.moxy-fruvous digest V14 #4587 **********************************************