From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #4487 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Wednesday, July 1 2020 Volume 14 : Number 4487 Today's Subjects: ----------------- Don't miss out on savings. Find out more. ["**Smart Financial**" <**Smart] Unique collector item or gift ["Trump Bill" ] Try 5 pairs of glasses at home for free ["Warby Parker Partner" ] ---------------------------------------------------------------------- Date: Wed, 1 Jul 2020 05:45:24 -0400 From: "**Smart Financial**" <**SmartFinancial**@dronesys.today> Subject: Don't miss out on savings. Find out more. Don't miss out on savings. Find out more. http://dronesys.today/tQPRLy7sijH_WWXNJZFY8G9IixX5ng_dAyDiTJvq6vlwy9hn http://dronesys.today/tcrqV_Gzz45Xj0oWlDHmVQHIyXrY5XAQDdQEOcW8DAZSIk_g Integrated multi-trophic aquaculture (IMTA) is a practice in which the byproducts (wastes) from one species are recycled to become inputs (fertilizers, food) for another. Fed aquaculture (for example, fish, shrimp) is combined with inorganic extractive and organic extractive (for example, shellfish) aquaculture to create balanced systems for environmental sustainability (biomitigation), economic stability (product diversification and risk reduction) and social acceptability (better management practices). "Multi-trophic" refers to the incorporation of species from different trophic or nutritional levels in the same system. This is one potential distinction from the age-old practice of aquatic polyculture, which could simply be the co-culture of different fish species from the same trophic level. In this case, these organisms may all share the same biological and chemical processes, with few synergistic benefits, which could potentially lead to significant shifts in the ecosystem. Some traditional polyculture systems may, in fact, incorporate a greater diversity of species, occupying several niches, as extensive cultures (low intensity, low management) within the same 2006"/> A working IMTA system can result in greater total production based on mutual benefits to the co-cultured species and improved ecosystem health, even if the production of individual species is lower than in a monoculture over a short-term period. Sometimes the term "integrated aquaculture" is used to describe the integration of monocultures through water transfer. For all intents and purposes, however, the terms "IMTA" and "integrated aquaculture" differ only in their degree of descriptiveness. Aquaponics, fractionated aquaculture, integrated agriculture-aquaculture systems, integrated peri-urban-aquaculture systems, and integrated fisheries-aquaculture systems are other variations of the IMTA concept. Netting materials Various materials, including nylon, polyester, polypropylene, polyethylene, plastic-coated welded wire, rubber, patented rope products (Spectra, Thorn-D, Dyneema), galvanized steel and copper are used for netting in aquaculture fish enclosures around the world. All of these materials are selected for a variety of reasons, including design feasibility, material strength, cost, and corrosion resistance. Main article: Copper alloys in aquaculture Recently, copper alloys have become important netting materials in aquaculture because they are antimicrobial (i.e., they destroy bacteria, viruses, fungi, algae, and other microbes) and they therefore prevent biofouling (i.e., the undesirable accumulation, adhesion, and growth of microorganisms, plants, algae, tubeworms, barnacles, mollusks, and other organisms). By inhibiting microbial growth, copper alloy aquaculture cages avoid costly net changes that are necessary with other materials. The resistance of organism growth on copper alloy nets also provides a cleaner and healthier environment for farmed fish to grow and thrive. ------------------------------ Date: Wed, 1 Jul 2020 05:25:25 -0400 From: "Trump Bill" Subject: Unique collector item or gift Unique collector item or gift http://remedie.guru/tG1NibIAatHPjOk5Fhd51OdBn7s_SNO7q5501JBQ3A3rjZqi http://remedie.guru/ZYeVike_QG0DoiD4hlPi3UnNAsXUSsixxu_Ikmk4Yg4Y2Qs8 Dam failures are generally catastrophic if the structure is breached or significantly damaged. Routine deformation monitoring and monitoring of seepage from drains in and around larger dams is useful to anticipate any problems and permit remedial action to be taken before structural failure occurs. Most dams incorporate mechanisms to permit the reservoir to be lowered or even drained in the event of such problems. Another solution can be rock grouting b pressure pumping portland cement slurry into weak fractured rock. During an armed conflict, a dam is to be considered as an "installation containing dangerous forces" due to the massive impact of a possible destruction on the civilian population and the environment. As such, it is protected by the rules of international humanitarian law (IHL) and shall not be made the object of attack if that may cause severe losses among the civilian population. To facilitate the identification, a protective sign consisting of three bright orange circles placed on the same axis is defined by the rules of IHL. The main causes of dam failure include inadequate spillway capacity, piping through the embankment, foundation or abutments, spillway design error (South Fork Dam), geological instability caused by changes to water levels during filling or poor surveying (Vajont, Malpasset, Testalinden Creek dams), poor maintenance, especially of outlet pipes (Lawn Lake Dam, Val di Stava Dam collapse), extreme rainfall (Shakidor Dam), earthquakes, and human, computer or design error (Buffalo Creek Flood, Dale Dike Reservoir, Taum Sauk pumped storage plant). A notable case of deliberate dam failure (prior to the above ruling) was the Royal Air Force 'Dambusters' raid on Germany in World War II (codenamed "Operation Chastise"), in which three German dams were selected to be breached in order to damage German infrastructure and manufacturing and power capabilities deriving from the Ruhr and Eder rivers. This raid later became the basis for several films. Since 2007, the Dutch IJkdijk foundation is developing, with an open innovation model and early warning system for levee/dike failures. As a part of the development effort, full-scale dikes are destroyed in the IJkdijk fieldlab. The destruction process is monitored by sensor networks from an international group of companies and scientific institutions. ------------------------------ Date: Wed, 1 Jul 2020 05:01:10 -0400 From: "Warby Parker Partner" Subject: Try 5 pairs of glasses at home for free Try 5 pairs of glasses at home for free http://ketocarr.buzz/0QpDGWVUhIHvMtEAMg6ETHdxVw89b_8MIGoiTLPBqMFYa5pd http://ketocarr.buzz/sRYE3LM5ZtMXiYEADp2hykLxP3C38rYarU3enGg_5EqmOI8 Most centrifugal pumps are not self-priming. In other words, the pump casing must be filled with liquid before the pump is started, or the pump will not be able to function. If the pump casing becomes filled with vapors or gases, the pump impeller becomes gas-bound and incapable of pumping. To ensure that a centrifugal pump remains primed and does not become gas-bound, most centrifugal pumps are located below the level of the source from which the pump is to take its suction. The same effect can be gained by supplying liquid to the pump suction under pressure supplied by another pump placed in the suction line. The process of filling the pump with liquid is called priming. Self-priming centrifugal pump In normal conditions, common centrifugal pumps are unable to evacuate the air from an inlet line leading to a fluid level whose geodetic altitude is below that of the pump. Self-priming pumps have to be capable of evacuating air (see Venting) from the pump suction line without any external auxiliary devices. Centrifugal pumps with an internal suction stage such as water-jet pumps or side-channel pumps are also classified as self-priming pumps. Self-Priming centrifugal were invented in 1935. One of the first companies to market a self-priming centrifugal pump was American Marsh in 1938. Centrifugal pumps that are not designed with an internal or external self-priming stage can only start to pump the fluid after the pump has initially been primed with the fluid. Sturdier but slower, their impellers are designed to move water, which is far denser than air, leaving them unable to operate when air is present. In addition, a suction-side swing check valve or a vent valve must be fitted to prevent any siphon action and ensure that the fluid remains in the casing when the pump has been stopped. In self-priming centrifugal pumps with a separation chamber the fluid pumped and the entrained air bubbles are pumped into the separation chamber by the impeller action. The air escapes through the pump discharge nozzle whilst the fluid drops back down and is once more entrained by the impeller. The suction line is thus continuously evacuated. The design required for such a self-priming feature has an adverse effect on pump efficiency. Also, the dimensions of the separating chamber are relatively large. For these reasons this solution is only adopted for small pumps, e.g. garden pumps. More frequently used types of self-priming pumps are side-channel and water-ring pumps. Another type of self-priming pump is a centrifugal pump with two casing chambers and an open impeller. This design is not only used for its self-priming capabilities but also for its degassing effects when pumping twophase mixtures (air/gas and liquid) for a short time in process engineering or when handling polluted fluids, for example, when draining water from construction pits. This pump type operates without a foot valve and without an evacuation device on the suction side. The pump has to be primed with the fluid to be handled prior to commissioning. Two-phase mixture is pumped until the suction line has been evacuated and the fluid level has been pushed into the front suction intake chamber by atmospheric pressure. During normal pumping operation this pump works like an ordinary centrifugal pump. ------------------------------ Date: Wed, 1 Jul 2020 05:59:27 -0400 From: "Smart Financial" Subject: What if there's a better way to save? What if there's a better way to save? http://dronesys.today/kRIKiJWsBf6-ygGqFyh5nALH4F1RQ_ysK0cTA1wopMGk9HFz http://dronesys.today/08Jhj-cIauSZBjtN_fUhRZOkOPAhcrJde7Ut6lABcfiBlnc Integrated multi-trophic aquaculture (IMTA) is a practice in which the byproducts (wastes) from one species are recycled to become inputs (fertilizers, food) for another. Fed aquaculture (for example, fish, shrimp) is combined with inorganic extractive and organic extractive (for example, shellfish) aquaculture to create balanced systems for environmental sustainability (biomitigation), economic stability (product diversification and risk reduction) and social acceptability (better management practices). "Multi-trophic" refers to the incorporation of species from different trophic or nutritional levels in the same system. This is one potential distinction from the age-old practice of aquatic polyculture, which could simply be the co-culture of different fish species from the same trophic level. In this case, these organisms may all share the same biological and chemical processes, with few synergistic benefits, which could potentially lead to significant shifts in the ecosystem. Some traditional polyculture systems may, in fact, incorporate a greater diversity of species, occupying several niches, as extensive cultures (low intensity, low management) within the same 2006"/> A working IMTA system can result in greater total production based on mutual benefits to the co-cultured species and improved ecosystem health, even if the production of individual species is lower than in a monoculture over a short-term period. Sometimes the term "integrated aquaculture" is used to describe the integration of monocultures through water transfer. For all intents and purposes, however, the terms "IMTA" and "integrated aquaculture" differ only in their degree of descriptiveness. Aquaponics, fractionated aquaculture, integrated agriculture-aquaculture systems, integrated peri-urban-aquaculture systems, and integrated fisheries-aquaculture systems are other variations of the IMTA concept. Netting materials Various materials, including nylon, polyester, polypropylene, polyethylene, plastic-coated welded wire, rubber, patented rope products (Spectra, Thorn-D, Dyneema), galvanized steel and copper are used for netting in aquaculture fish enclosures around the world. All of these materials are selected for a variety of reasons, including design feasibility, material strength, cost, and corrosion resistance. Main article: Copper alloys in aquaculture Recently, copper alloys have become important netting materials in aquaculture because they are antimicrobial (i.e., they destroy bacteria, viruses, fungi, algae, and other microbes) and they therefore prevent biofouling (i.e., the undesirable accumulation, adhesion, and growth of microorganisms, plants, algae, tubeworms, barnacles, mollusks, and other organisms). By inhibiting microbial growth, copper alloy aquaculture cages avoid costly net changes that are necessary with other materials. The resistance of organism growth on copper alloy nets also provides a cleaner and healthier environment for farmed fish to grow and thrive. ------------------------------ Date: Wed, 1 Jul 2020 04:13:30 -0400 From: "Build Your Own Silencers" Subject: How To Build Your Own Military-Grade Silencer At Home (100% legal) How To Build Your Own Military-Grade Silencer At Home (100% legal) http://remedie.guru/9kF8CyylwDRGjFtVbMJq90Ee9szdnM6y-CcNJVjEh9KYiX5Q http://remedie.guru/Ut6eqgbW94GeLaMTlPiqkGVcYCG37twYWwTgtnR2uKcOiPLh A fully developed sea has the maximum wave size theoretically possible for a wind of a specific strength, duration, and fetch. Further exposure to that specific wind could only cause a dissipation of energy due to the breaking of wave tops and formation of "whitecaps". Waves in a given area typically have a range of heights. For weather reporting and for scientific analysis of wind wave statistics, their characteristic height over a period of time is usually expressed as significant wave height. This figure represents an average height of the highest one-third of the waves in a given time period (usually chosen somewhere in the range from 20 minutes to twelve hours), or in a specific wave or storm system. The significant wave height is also the value a "trained observer" (e.g. from a ship's crew) would estimate from visual observation of a sea state. Given the variability of wave height, the largest individual waves are likely to be somewhat less than twice the reported significant wave height for a particular day or storm. Wave formation on an initially flat water surface by wind is started by a random distribution of normal pressure of turbulent wind flow over the water. This pressure fluctuation produces normal and tangential stresses in the surface water, which generates waves. It is assumed that: The water is originally at rest. The water is not viscous. The water is irrotational. There is a random distribution of normal pressure to the water surface from the turbulent wind. Correlations between air and water motions are neglected. The second mechanism involves wind shear forces on the water surface. John W. Miles suggested a surface wave generation mechanism which is initiated by turbulent wind shear flows based on the inviscid Orr-Sommerfeld equation in 1957. He found the energy transfer from wind to water surface is proportional to the curvature of the velocity profile of the wind at the point where the mean wind speed is equal to the wave speed. Since the wind speed profile is logarithmic to the water surface, the curvature has a negative sign at this point. This relation shows the wind flow transferring its kinetic energy to the water surface at their interface. ------------------------------ Date: Mon, 29 Jun 2020 12:29:02 -0400 From: "Secret Betting" Subject: Todayâs Best Bets Todaybs Best Bets http://stayinhome.us/Sqk_l3ayA-qx_xhL-bPnKJrlQj3q0j_2Bi5NmKc9rreviZ0 http://stayinhome.us/MWSQ_e2RH4FxQV4oMhbDF7rlDvMKQAXmEvp5V1zU764B0g To transmit their input, typical cabled mice use a thin electrical cord terminating in a standard connector, such as RS-232C, PS/2, ADB or USB. Cordless mice instead transmit data via infrared radiation (see IrDA) or radio (including Bluetooth), although many such cordless interfaces are themselves connected through the aforementioned wired serial buses. While the electrical interface and the format of the data transmitted by commonly available mice is currently standardized on USB, in the past it varied between different manufacturers. A bus mouse used a dedicated interface card for connection to an IBM PC or compatible computer. Mouse use in DOS applications became more common after the introduction of the Microsoft Mouse, largely because Microsoft provided an open standard for communication between applications and mouse driver software. Thus, any application written to use the Microsoft standard could use a mouse with a driver that implements the same API, even if the mouse hardware itself was incompatible with Microsoft's. This driver provides the state of the buttons and the distance the mouse has moved in units that its documentation calls "mickeys", as does the Allegro library. Early mice Xerox Alto mouse In the 1970s, the Xerox Alto mouse, and in the 1980s the Xerox optical mouse, used a quadrature-encoded X and Y interface. This two-bit encoding per dimension had the property that only one bit of the two would change at a time, like a Gray code or Johnson counter, so that the transitions would not be misinterpreted when asynchronously sampled. The earliest mass-market mice, such as on the original Macintosh, Amiga, and Atari ST mice used a D-subminiature 9-pin connector to send the quadrature-encoded X and Y axis signals directly, plus one pin per mouse button. The mouse was a simple optomechanical device, and the decoding circuitry was all in the main computer. The DE-9 connectors were designed to be electrically compatible with the joysticks popular on numerous 8-bit systems, such as the Commodore 64 and the Atari 2600. Although the ports could be used for both purposes, the signals must be interpreted differently. As a result, plugging a mouse into a joystick port causes the "joystick" to continuously move in some direction, even if the mouse stays still, whereas plugging a joystick into a mouse port causes the "mouse" to only be able to move a single pixel in each direction. ------------------------------ End of alt.music.moxy-fruvous digest V14 #4487 **********************************************