From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #4477 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Tuesday, June 30 2020 Volume 14 : Number 4477 Today's Subjects: ----------------- Do This Before Bedtime And Restore Hearing ["Fix Hearing Loss" Subject: Do This Before Bedtime And Restore Hearing Do This Before Bedtime And Restore Hearing http://heaterhyper.bid/_RrK955H1vSFJTF47I2N5-mOBqLCWdlEYIPg5p3VBKazwpc7 http://heaterhyper.bid/VtU5FP-tMUyo_w2IdAnbPZ3cpKhBbVYaj9pKUu6TdCamKUY The presence of volatile phases in a rock under pressure can stabilize a melt fraction. The presence of even 0.8% water may reduce the temperature of melting by as much as 100 B0C. Conversely, the loss of water and volatiles from a magma may cause it to essentially freeze or solidify. Also a major portion of almost all magma is silica, which is a compound of silicon and oxygen. Magma also contains gases, which expand as the magma rises. Magma that is high in silica resists flowing, so expanding gases are trapped in it. Pressure builds up until the gases blast out in a violent, dangerous explosion. Magma that is relatively poor in silica flows easily, so gas bubbles move up through it and escape fairly gently. Origins of magma by partial melting Partial melting Melting of solid rocks to form magma is controlled by three physical parameters: temperature, pressure, and composition. The most common mechanisms of magma generation in the mantle are decompression melting, heating (e.g., by interaction with a hot mantle plume), and lowering of the solidus (e.g., by compositional changes such as the addition of water). Mechanisms are discussed further in the entry for igneous rock. When rocks melt, they do so slowly and gradually because most rocks are made of several minerals, which all have different melting points; moreover, the physical and chemical relationships controlling the melting are complex. As a rock melts, for example, its volume changes. When enough rock is melted, the small globules of melt (generally occurring between mineral grains) link up and soften the rock. Under pressure within the earth, as little as a fraction of a percent of partial melting may be sufficient to cause melt to be squeezed from its source. Melts can stay in place long enough to melt to 20% or even 35%, but rocks are rarely melted in excess of 50%, because eventually the melted rock mass becomes a crystal-and-melt mush that can then ascend en masse as a diapir, which may then cause further decompression melting. Geochemical implications of partial melting The degree of partial melting is critical to determination of the characteristics of the magma it produces, and the likelihood that a melt forms reflects the degrees to which incompatible and compatible elements are involved. Incompatible elements commonly include potassium, barium, caesium, and rubidium. Rock types produced by small degrees of partial melting in the Earth's mantle are typically alkaline (Ca, Na), potassic (K) or peralkaline (in which the aluminium to silica ratio is high). Typically, primitive melts of this composition form lamprophyre, lamproite, kimberlite and sometimes nepheline-bearing mafic rocks such as alkali basalts and essexite gabbros or even carbonatite. Pegmatite may be produced by low degrees of partial melting of the crust. Some granite-composition magmas are eutectic (or cotectic) melts, and they may be produced by low to high degrees of partial melting of the crust, as well as by fractional crystallization. At high degrees of partial melting of the crust, granitoids such as tonalite, granodiorite and monzonite can be produced, but other mechanisms are typically important in producing them. ------------------------------ Date: Tue, 30 Jun 2020 04:28:24 -0400 From: "EndoSnake BoreScope" <**EndoSnakeBoreScope**@goldca.today> Subject: EndoSnake fits easily anywhere you need EndoSnake fits easily anywhere you need http://goldca.today/luQW53Y63DPTsnvCUd2W_3HJLwGquuIJNBRamopA2lCGV00U http://goldca.today/pjd6v2AItA3yu4mi7vIx79DcX65VvBq7RQWZSpsJRyoPTi0 demonstrate that the cores live much longer than the average lifetime of dust mass. Those cores mostly start with silicate particles condensing in the atmospheres of cool, oxygen-rich red-giants and carbon grains condensing in the atmospheres of cool carbon stars. Red giants have evolved or altered off the main sequence and have entered the giant phase of their evolution and are the major source of refractory dust grain cores in galaxies. Those refractory cores are also called stardust (section above), which is a scientific term for the small fraction of cosmic dust that condensed thermally within stellar gases as they were ejected from the stars. Several percent of refractory grain cores have condensed within expanding interiors of supernovae, a type of cosmic decompression chamber. Meteoriticists who study refractory stardust (extracted from meteorites) often call it presolar grains but that within meteorites is only a small fraction of all presolar dust. Stardust condenses within the stars via considerably different condensation chemistry than that of the bulk of cosmic dust, which accretes cold onto preexisting dust in dark molecular clouds of the galaxy. Those molecular clouds are very cold, typically less than 50K, so that ices of many kinds may accrete onto grains, in cases only to be destroyed or split apart by radiation and sublimation into a gas component. Finally, as the Solar System formed many interstellar dust grains were further modified by coalescence and chemical reactions in the planetary accretion disk. The history of the various types of grains in the early Solar System is complicated and only partially understood. Astronomers know that the dust is formed in the envelopes of late-evolved stars from specific observational signatures. In infrared light, emission at 9.7 micrometres is a signature of silicate dust in cool evolved oxygen-rich giant stars. Emission at 11.5 micrometres indicates the presence of silicon carbide dust in cool evolved carbon-rich giant stars. These help provide evidence that the small silicate particles in space came from the ejected outer envelopes of these stars. Conditions in interstellar space are generally not suitable for the formation of silicate cores. This would take excessive time to accomplish, even if it might be possible. The arguments are that: given an observed typical grain diameter a, the time for a grain to attain a, and given the temperature of interstellar gas, it would take considerably longer than the age of the Universe for interstellar grains to form. On the other hand, grains are seen to have recently formed in the vicinity of nearby stars, in nova and supernova ejecta, and in R Coronae Borealis variable stars which seem to eject discrete clouds containing both gas and dust. So mass loss from stars is unquestionably where the refractory cores of grains formed. Most dust in the Solar System is highly processed dust, recycled from the material out of which the Solar System formed and subsequently collected in the planetesimals, and leftover solid material such as comets and asteroids, and reformed in each of those bodies' collisional lifetimes. During the Solar System's formation history, the most abundant element was (and still is) H2. The metallic elements: magnesium, silicon, and iron, which are the principal ingredients of rocky planets, condensed into solids at the highest temperatures of the planetary disk. Some molecules such as CO, N2, NH3, and free oxygen, existed in a gas phase. Some molecules, for example, graphite (C) and SiC would condense into solid grains in the planetary disk; but carbon and SiC grains found in meteorites are presolar based on their isotopic compositions, rather than from the planetary disk formation. Some molecules also formed complex organic compounds and some molecules formed frozen ice mantles, of which either could coat the "refractory" (Mg, Si, Fe) grain cores. Stardust once more provides an exception to the general trend, as it appears to be totally unprocessed since its thermal condensation within stars as refractory crystalline minerals. The condensation of graphite occurs within supernova interiors as they expand and cool, and do so even in gas containing more oxygen than carbon, a surprising carbon chemistry made possible by the intense radioactive environment of supernovae. This special example of dust formation has merited specific review. Planetary disk formation of precursor molecules was determined, in large part, by the temperature of the solar nebula. Since the temperature of the solar nebula decreased with heliocentric distance, scientists can infer a dust grain's origin(s) with knowledge of the grain's materials. Some materials could only have been formed at high temperatures, while other grain materials could only have been formed at much lower temperatures. The materials in a single interplanetary dust particle often show that the grain elements formed in different locations and at different times in the solar nebula. Most of the matter present in the original solar nebula has since disappeared; drawn into the Sun, expelled into interstellar space, or reprocessed, for example, as part of the planets, asteroids or comets. ------------------------------ Date: Tue, 30 Jun 2020 05:41:48 -0400 From: "**Ashley at MyScoreIQ**" <**AshleyatMyScoreIQ**@goldca.today> Subject: Receive your FICO® Scores Now - Used by 90% of Top Lenders Receive your FICOB. Scores Now - Used by 90% of Top Lenders http://goldca.today/mbqHt1GxLe-x2Ojphko9NfAcnjapDT6LTpwAhZJkF9L_2Bk http://goldca.today/LxLLOCWO6ZeY7nkNG5RIEAyI3j9_yaKzJybd-G2L3TDr1ds Air pollutant emission factors are reported representative values that attempt to relate the quantity of a pollutant released to the ambient air with an activity associated with the release of that pollutant. These factors are usually expressed as the weight of pollutant divided by a unit weight, volume, distance, or duration of the activity emitting the pollutant (e.g., kilograms of particulate emitted per tonne of coal burned). Such factors facilitate estimation of emissions from various sources of air pollution. In most cases, these factors are simply averages of all available data of acceptable quality, and are generally assumed to be representative of long-term averages. There are 12 compounds in the list of persistent organic pollutants. Dioxins and furans are two of them and intentionally created by combustion of organics, like open burning of plastics. These compounds are also endocrine disruptors and can mutate the human genes. The United States Environmental Protection Agency has published a compilation of air pollutant emission factors for a wide range of industrial sources. The United Kingdom, Australia, Canada and many other countries have published similar compilations, as well as the European Environment Agency. Exposure Up to 30 % of Europeans living in cities are exposed to air pollutant levels exceeding EU air quality standards. And around 98 % of Europeans living in cities are exposed to levels of air pollutants deemed damaging to health by the World Health Organization's more stringent guidelines. Air pollution risk is a function of the hazard of the pollutant and the exposure to that pollutant. Air pollution exposure can be expressed for an individual, for certain groups (e.g. neighborhoods or children living in a country), or for entire populations. For example, one may want to calculate the exposure to a hazardous air pollutant for a geographic area, which includes the various microenvironments and age groups. This can be calculated as an inhalation exposure. This would account for daily exposure in various settings (e.g. different indoor micro-environments and outdoor locations). The exposure needs to include different age and other demographic groups, especially infants, children, pregnant women and other sensitive subpopulations. The exposure to an air pollutant must integrate the concentrations of the air pollutant with respect to the time spent in each setting and the respective inhalation rates for each subgroup for each specific time that the subgroup is in the setting and engaged in particular activities (playing, cooking, reading, working, spending time in traffic, etc.). For example, a small child's inhalation rate will be less than that of an adult. A child engaged in vigorous exercise will have a higher respiration rate than the same child in a sedentary activity. The daily exposure, then, needs to reflect the time spent in each micro-environmental setting and the type of activities in these settings. The air pollutant concentration in each microactivity/microenvironmental setting is summed to indicate the exposure. For some pollutants such as black carbon, traffic related exposures may dominate total exposure despite short exposure times since high concentrations coincide with proximity to major roads or participation to (motorized) traffic. A large portion of total daily exposure occurs as short peaks of high concentrations, but it remains unclear how to define peaks and determine their frequency and health impac ------------------------------ Date: Tue, 30 Jun 2020 03:44:27 -0400 From: "prox10" <**prox10**@goldca.today> Subject: Sending you a free bottle of probiotics (need your address) Sending you a free bottle of probiotics (need your address) http://goldca.today/2ADVp6pOI8j4l3kEvO6tpY3L_D8U1V9djOt7t5_60OmQYA http://goldca.today/3uT6QRk9Ed_V3Y-rLPYsH2yt4pydAr0qO06C9QmwewZQ4A given in terms of an effective temperature, which is the temperature of an idealized black body that radiates its energy at the same luminosity per surface area as the star. Note that the effective temperature is only a representative of the surface, as the temperature increases toward the core. The temperature in the core region of a star is several million kelvins. The stellar temperature will determine the rate of ionization of various elements, resulting in characteristic absorption lines in the spectrum. The surface temperature of a star, along with its visual absolute magnitude and absorption features, is used to classify a star (see classification below). Massive main sequence stars can have surface temperatures of 50,000 K. Smaller stars such as the Sun have surface temperatures of a few thousand K. Red giants have relatively low surface temperatures of about 3,600 K; but they also have a high luminosity due to their large exterior surface area. Radiation The energy produced by stars, a product of nuclear fusion, radiates to space as both electromagnetic radiation and particle radiation. The particle radiation emitted by a star is manifested as the stellar wind, which streams from the outer layers as electrically charged protons and alpha and beta particles. Although almost massless, there also exists a steady stream of neutrinos emanating from the star's core. The production of energy at the core is the reason stars shine so brightly: every time two or more atomic nuclei fuse together to form a single atomic nucleus of a new heavier element, gamma ray photons are released from the nuclear fusion product. This energy is converted to other forms of electromagnetic energy of lower frequency, such as visible light, by the time it reaches the star's outer layers. The color of a star, as determined by the most intense frequency of the visible light, depends on the temperature of the star's outer layers, including its photosphere. Besides visible light, stars also emit forms of electromagnetic radiation that are invisible to the human eye. In fact, stellar electromagnetic radiation spans the entire electromagnetic spectrum, from the longest wavelengths of radio waves through infrared, visible light, ultraviolet, to the shortest of X-rays, and gamma rays. From the standpoint of total energy emitted by a star, not all components of stellar electromagnetic radiation are significant, but all frequencies provide insight into the star's physics. Using the stellar spectrum, astronomers can also determine the surface temperature, surface gravity, metallicity and rotational velocity of a star. If the distance of the star is found, such as by measuring the parallax, then the luminosity of the star can be derived. The mass, radius, surface gravity, and rotation period can then be estimated based on stellar models. (Mass can be calculated for stars in binary systems by measuring their orbital velocities and distances. Gravitational microlensing has been used to measure the mass of a single star.) With these parameters, astronomers can also estimate the age of the star. Luminosity The luminosity of a star is the amount of light and other forms of radiant energy it radiates per unit of time. It has units of power. The luminosity of a star is determined by its radius and surface temperature. Many stars do not radiate uniformly across their entire surface. The rapidly rotating star Vega, for example, has a higher energy flux (power per unit area) at its poles than along its equator. Patches of the star's surface with a lower temperature and luminosity than average are known as starspots. Small, dwarf stars such as our Sun generally have essentially featureless disks with only small starspots. Giant stars have much larger, more obvious starspots, and they also exhibit strong stellar limb darkening. That is, the brightness decreases towards the edge of the stellar disk. Red dwarf flare stars such as UV Ceti may also possess prominent starspot features ------------------------------ Date: Tue, 30 Jun 2020 05:51:52 -0400 From: "Smart Financial" Subject: Do you have the best rate? Do you have the best rate? http://glucoplus.guru/RdphOzbLitboHI-TZfA5fKpNYufl3y57WDZyR2dbKaUFLjwJ http://glucoplus.guru/-cq73AgSYeIo6jksXRVRKzV9fqGz8Ybsysf8GGj0aLmjRjsh Data is accumulating that air pollution exposure also affects the central nervous system. In a June 2014 study conducted by researchers at the University of Rochester Medical Center, published in the journal Environmental Health Perspectives, it was discovered that early exposure to air pollution causes the same damaging changes in the brain as autism and schizophrenia. The study also shows that air pollution also affected short-term memory, learning ability, and impulsivity. Lead researcher Professor Deborah Cory-Slechta said that "When we looked closely at the ventricles, we could see that the white matter that normally surrounds them hadn't fully developed. It appears that inflammation had damaged those brain cells and prevented that region of the brain from developing, and the ventricles simply expanded to fill the space. Our findings add to the growing body of evidence that air pollution may play a role in autism, as well as in other neurodevelopmental disorders." In a study of mice, air pollution also has a more significant negative effect on males than on females. In 2015, experimental studies reported the detection of significant episodic (situational) cognitive impairment from impurities in indoor air breathed by test subjects who were not informed about changes in the air quality. Researchers at the Harvard University and SUNY Upstate Medical University and Syracuse University measured the cognitive performance of 24 participants in three different controlled laboratory atmospheres that simulated those found in "conventional" and "green" buildings, as well as green buildings with enhanced ventilation. Performance was evaluated objectively using the widely used Strategic Management Simulation software simulation tool, which is a well-validated assessment test for executive decision-making in an unconstrained situation allowing initiative and improvisation. Significant deficits were observed in the performance scores achieved in increasing concentrations of either volatile organic compounds (VOCs) or carbon dioxide, while keeping other factors constant. The highest impurity levels reached are not uncommon in some classroom or office environments. Air pollution increases the risk of dementia in people over 50 years old. Agricultural effects In India in 2014, it was reported that air pollution by black carbon and ground level ozone had reduced crop yields in the most affected areas by almost half in 2011 when compared to 1980 levels. Economic effects Air pollution costs the world economy $5 trillion per year as a result of productivity losses and degraded quality of life, according to a joint study by the World Bank and the Institute for Health Metrics and Evaluation (IHME) at the University of Washington. These productivity losses are caused by deaths due to diseases caused by air pollution. One out of ten deaths in 2013 was caused by diseases associated with air pollution and the problem is getting worse. The problem is even more acute in the developing world. "Children under age 5 in lower-income countries are more than 60 times as likely to die from exposure to air pollution as children in high-income countries." The report states that additional economic losses caused by air pollution, including health costs and the adverse effect on ------------------------------ End of alt.music.moxy-fruvous digest V14 #4477 **********************************************