From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #4427 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Wednesday, June 24 2020 Volume 14 : Number 4427 Today's Subjects: ----------------- Only pay for what you need. ["Liberty Mutual Insurance" Subject: Only pay for what you need. Only pay for what you need. http://heatpad.co/Rt9A8cc8oKvkN49Jzwoh5e0wJSXKBjXLtB_nqPGX7GVPsxoT http://heatpad.co/7OVS-p71KJeKtaPRwcuxJ-JwPIYSDErcQ6_EEVsxKwg4bEl7 Over elevated surfaces, heating of the ground exceeds the heating of the surrounding air at the same altitude above sea level, creating an associated thermal low over the terrain and enhancing any lows which would have otherwise existed, and changing the wind circulation of the region. In areas where there is rugged topography that significantly interrupts the environmental wind flow, the wind can change direction and accelerate parallel to the wind obstruction. This barrier jet can increase the low level wind by 45%. In mountainous areas, local distortion of the airflow is more severe. Jagged terrain combines to produce unpredictable flow patterns and turbulence, such as rotors. Strong updrafts, downdrafts and eddies develop as the air flows over hills and down valleys. Wind direction changes due to the contour of the land. If there is a pass in the mountain range, winds will rush through the pass with considerable speed due to the Bernoulli principle that describes an inverse relationship between speed and pressure. The airflow can remain turbulent and erratic for some distance downwind into the flatter countryside. These conditions are dangerous to ascending and descending airplanes. Daytime heating and nighttime cooling of the hilly slopes lead to day to night variations in the airflow, similar to the relationship between sea breeze and land breeze. At night, the sides of the hills cool through radiation of the heat. The air along the hills becomes cooler and denser, blowing down into the valley, drawn by gravity. This is known a mountain breeze. If the slopes are covered with ice and snow, the mountain breeze will blow during the day, carrying the cold dense air into the warmer, barren valleys. The slopes of hills not covered by snow will be warmed during the day. The air that comes in contact with the warmed slopes becomes warmer and less dense and flows uphill. This is known as an anabatic wind or valley breeze. Effect on precipitation Orographic precipitation Main articles: Orographic lift, Precipitation types (meteorology), and United States rainfall climatology Orographic precipitation occurs on the windward side of mountains and is caused by the rising air motion of a large-scale flow of moist air across the mountain ridge, resulting in adiabatic cooling and condensation. In mountainous parts of the world subjected to consistent winds (for example, the trade winds), a more moist climate usually prevails on the windward side of a mountain than on the leeward or downwind side. Moisture is removed by orographic lift, leaving drier air (see foehn wind) on the descending and generally warming, leeward side where a rain shadow is observed. In South America, the Andes mountain range blocks Pacific moisture that arrives in that continent, resulting in a desertlike climate just downwind across western Argentina. The Sierra Nevada range creates the same effect in North America forming the Great Basin and Mojave Deserts. Effect on nature Sand blowing off a crest in the Kelso Dunes of the Mojave Desert, California. See also: Dune, Erosion, and Insect Insects are swept along by the prevailing winds, while birds follow their own course. As such, fine line patterns within weather radar imagery, associated with converging winds, are dominated by insect returns. In the Great Plains, wind erosion of agricultural land is a significant problem, and is mainly driven by the prevailing wind. Because of this, wind barrier strips have been developed to minimize this type of erosion. The strips can be in the form of soil ridges, crop strips, crops rows, or trees which act as wind breaks. They are oriented perpendicular to the wind in order to be most effective. In regions with minimal vegetation, such as coastal and desert areas, transverse sand dunes orient themselves perpendicular to the prevailing wind direction, while longitudinal dunes orient themselves parallel to the prevailing winds ------------------------------ End of alt.music.moxy-fruvous digest V14 #4427 **********************************************