From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #4328 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Saturday, June 13 2020 Volume 14 : Number 4328 Today's Subjects: ----------------- Are you or a loved one not able to work due to injury? You may be entitled to ["American Disability Claims" Subject: Are you or a loved one not able to work due to injury? You may be entitled to Are you or a loved one not able to work due to injury? You may be entitled to http://ketocarr.buzz/6v3DHylvOAnm6ZKC9cgwqDgYk1RhSuSf0NwWVkp4EjYA71Xp http://ketocarr.buzz/NZHQozoxk-94wxYWvUVe-e8PKQVYi3Pg21k_LYLNjttVego Nematophagous fungi have been found throughout the world in a wide range of habitats and climates, but few from extreme environments. Most studied have been the species that attack the nematodes of interest to farmers, horticulturists and foresters, but there are large numbers of species as yet undescribed. The sexual stage of Orbilia occurs on rotting wood on land or in fresh water, while the asexual stage occurs in marine, fresh water and terrestrial habitats. Arthrobotrys dactyloides was the first species to be discovered in brackish water, and other species have been found on mangroves. Ecology Nematode-trapping fungi are mostly concentrated in the upper part of the soil, in pastures, leaf litter, mangroves and certain shallow aquatic habitats. They employ techniques such as adhesive hyphal strands, adhesive knobs, adhesive nets formed from hyphal threads, loops of hyphae which tighten round any ensnared nematodes and non-constricting loops. When the nematode has been restrained, the hyphae penetrate the cuticle and the internal tissues of the nematode are devoured. It has been found that Arthrobotrys oligospora, a net-building species of fungus, can detect the presence of nematodes nearby in the soil and only builds its snares when they are present. This is presumably because building the net is a highly energy-consuming process; the fungus is alerted to the presence of the nematode by detecting the pheromones, such as ascarosides, with which the worms communicate. The fungus takes active steps to attract its prey by producing olfactory cues that mimic those used by the worm to find food and attract mates. Arthrobotrys dactyloides is a species that employs a loop of hypha to catch nematodes; when one tries to pass through the ring, the loop constricts with great rapidity, trapping the prey. The hyphae of shaggy ink caps attack nematodes Juvenile root-knot nematode (Meloidogyne incognita) penetrating a tomato root Some nematophagous fungi produce toxic substances which immobilise nematodes. For example, the hypha of the shaggy ink cap (Coprinus comatus) attacks the free-living soil nematode Panagrellus redivivus with a structure known as a spiny ball; this is used to damage the nematode cuticle to enable immobilisation, after which the hypha pierces the skin and digests the contents. Most endoparasitic fungi have spores that are attracted to soil nematodes and tend to congregate in the mouth region. Having penetrated the cuticle, the hyphae grow throughout the nematode, absorbing its tissues. Escape tubes emerge from these and grow through the cuticle, and in due course, further motile spores exit through these, ready to infect other nematodes. In other species of fungi, it is conidia rather than spores which are encountered by the nematode and infect it in a similar way. In the case of Harposporium anguillulae, the sickle-shaped conidia are ingested by the nematode and lodge in the oesophagus or gut from where they invade the tissues. In egg parasitic species, the hypha flattens itself against the egg, the appearance of appressoria indicating that infection is about to take place or has already done so. The hypha then pierces the egg and devours the developing juvenile nematode before producing conidiophores and growing on towards nearby eggs ------------------------------ Date: Sat, 13 Jun 2020 05:01:42 -0400 From: "**Trump 2020 Stiletto**" Subject: 2 Gifts For Your Overwhelming Support! 2 Gifts For Your Overwhelming Support! http://ketocarr.buzz/n-dWAhSYFdrG31jhfSL3N_ZI0-_Vd1eG1vD6HVFY3rv5ppPX http://ketocarr.buzz/AntPVBxldJ2xc9l2rsoSzP0HZHT0jrP-Yh6i547rVohD5FeI The epidermis of fish and of most amphibians consists entirely of live cells, with only minimal quantities of keratin in the cells of the superficial layer. It is generally permeable, and in the case of many amphibians, may actually be a major respiratory organ. The dermis of bony fish typically contains relatively little of the connective tissue found in tetrapods. Instead, in most species, it is largely replaced by solid, protective bony scales. Apart from some particularly large dermal bones that form parts of the skull, these scales are lost in tetrapods, although many reptiles do have scales of a different kind, as do pangolins. Cartilaginous fish have numerous tooth-like denticles embedded in their skin, in place of true scales. Sweat glands and sebaceous glands are both unique to mammals, but other types of skin gland are found in other vertebrates. Fish typically have a numerous individual mucus-secreting skin cells that aid in insulation and protection, but may also have poison glands, photophores, or cells that produce a more watery, serous fluid. In amphibians, the mucus cells are gathered together to form sac-like glands. Most living amphibians also possess granular glands in the skin, that secrete irritating or toxic compounds. Although melanin is found in the skin of many species, in the reptiles, the amphibians, and fish, the epidermis is often relatively colorless. Instead, the color of the skin is largely due to chromatophores in the dermis, which, in addition to melanin, may contain guanine or carotenoid pigments. Many species, such as chameleons and flounders may be able to change the color of their skin by adjusting the relative size of their chromatophores. Amphibians See also: amphibians Overview Amphibians possess two types of glands, mucous and granular (serous). Both of these glands are part of the integument and thus considered cutaneous. Mucous and granular glands are both divided into three different sections which all connect to structure the gland as a whole. The three individual parts of the gland are the duct, the intercalary region, and lastly the alveolar gland (sac). Structurally, the duct is derived via keratinocytes and passes through to the surface of the epidermal or outer skin layer thus allowing external secretions of the body. The gland alveolus is a sac shaped structure that is found on the bottom or base region of the granular gland. The cells in this sac specialize in secretion. Between the alveolar gland and the duct is the intercalary system which can be summed up as a transitional region connecting the duct to the grand alveolar beneath the epidermal skin layer. In general, granular glands are larger in size than the mucous glands, however mucous glands hold a much greater majority in overall number. Frog Gland Anatomy- A: Mucous gland (alveolus), B: Chromophore, C: Granular Gland (alveolus), D: Connective Tissue, E: Stratum Corneum, F: Transition Zone (intercalary region), G: Epidermis (Where the duct resides), H: Dermis Granular Glands Granular glands can be identified as venomous and often differ in the type of toxin as well as the concentrations of secretions across various orders and species within the amphibians. They are located in clusters differing in concentration depending on amphibian taxa. The toxins can be fatal to most vertebrates or have no effect against others. These glands are alveolar meaning they structurally have little sacs in which venom is produced and held before it is secreted upon defensive behaviors. Structurally, the ducts of the granular gland initially maintain a cylindrical shape. However, when the ducts become mature and full of toxic fluid, the base of the ducts become swollen due to the pressure from the inside. This causes the epidermal layer to form a pit like opening on the surface of the duct in which the inner fluid will be secreted in an upwards fashion. The intercalary region of granular glands is more developed and mature in comparison with mucous glands. This region resides as a ring of cells surrounding the basal portion of the duct which are argued to have an ectodermal muscular nature due to their influence over the lumen (space inside the tube) of the duct with dilation and constriction functions during secretions. The cells are found radially around the duct and provide a distinct attachment site for muscle fibers around the gland's body. The gland alveolus is a sac that is divided into three specific regions/layers. The outer layer or tunica fibrosa is composed of densely packed connective-tissue which connects with fibers from the spongy intermediate layer where elastic fibers, as well as nerves, reside. The nerves send signals to the muscles as well as the epithelial layers. Lastly, the epithelium or tunica propria encloses the ------------------------------ End of alt.music.moxy-fruvous digest V14 #4328 **********************************************