From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #4326 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Friday, June 12 2020 Volume 14 : Number 4326 Today's Subjects: ----------------- Set up a shop even if you've no money, no space and no tools? ["Ultimate ] Open up... ["**Reading Head Start**" ] ---------------------------------------------------------------------- Date: Fri, 12 Jun 2020 07:58:17 -0400 From: "Ultimate Small Shop" Subject: Set up a shop even if you've no money, no space and no tools? Set up a shop even if you've no money, no space and no tools? http://smallshop.guru/D0AiwlE3pGWav9Rdvf9_c3g4ODpo8bEku1GxBfpTCrWEGny4 http://smallshop.guru/iSG9c2ZAeaMWg1wZVz27sDwgltsKZqFl2Tws3LK4egVsrA-G All honey bees live in colonies where the workers sting intruders as a form of defense, and alarmed bees release a pheromone that stimulates the attack response in other bees. The different species of honey bees are distinguished from all other bee species (and virtually all other Hymenoptera) by the possession of small barbs on the sting, but these barbs are found only in the worker bees. The sting apparatus, including the barbs, may have evolved specifically in response to predation by vertebrates, as the barbs do not usually function (and the sting apparatus does not detach) unless the sting is embedded in fleshy tissue. While the sting can also penetrate the membranes between joints in the exoskeleton of other insects (and is used in fights between queens), in the case of Apis cerana japonica, defense against larger insects such as predatory wasps (e.g. Asian giant hornet) is usually performed by surrounding the intruder with a mass of defending worker bees, which vibrate their muscles vigorously to raise the temperature of the intruder to a lethal level ("balling"). Previously, heat alone was thought to be responsible for killing intruding wasps, but recent experiments have demonstrated the increased temperature in combination with increased carbon dioxide levels within the ball produce the lethal effect. This phenomenon is also used to kill a queen perceived as intruding or defective, an action known to beekeepers as 'balling the queen', named for the ball of bees formed. Defense can vary based on the habitat of the bee. In the case of those honey bee species with open combs (e.g., A. dorsata), would-be predators are given a warning signal that takes the form of a "Mexican wave" that spreads as a ripple across a layer of bees densely packed on the surface of the comb when a threat is perceived, and consists of bees momentarily arching their bodies and flicking their wings. In cavity dwelling species such as Apis cerana, Apis mellifera, and Apis nigrocincta, entrances to these cavities are guarded and checked for intruders in incoming traffic. Another act of defense against nest invaders, particularly wasps, is "body shaking," a violent and pendulum like swaying of the abdomen, performed by worker bees. Venom The stings of bees are barbed and therefore embed themselves into the sting site, and the sting apparatus has its own musculature and ganglion which keep delivering venom even after detachment. The gland which produces the alarm pheromone is also associated with the sting apparatus. The embedded stinger continues to emit additional alarm pheromone after it has torn loose; other defensive workers are thereby attracted to the sting site. The worker dies after the sting becomes lodged and is subsequently torn loose from the bee's abdomen. The honey bee's venom, known as apitoxin, carries several active components, the most abundant of which is melittin, and the most biologically active are enzymes, particularly phospholipase A2. Bee venom is under laboratory and clinical research for its potential properties and uses in reducing risks for adverse events from bee venom therapy, rheumatoid arthritis, and use as an immunotherapy for protection against allergies from insect stings. Bee venom products are marketed in many countries, but, as of 2018, there are no approved clinical uses for these products which carry various warnings for potential allergic reactions. Competition With an increased number of honey bees in a specific area due to beekeeping, domesticated bees and native wild bees often have to compete for the limited habitat and food sources available. Western honey bees may become defensive in response to the seasonal arrival of competition from other colonies, particularly Africanized bees which may be on the offence and defence year round due to their tropical origin. In the United Kingdom, honey bees are known to compete with Bombus hortorum, a bumblebee species, because they forage at the same sites. To resolve the issue and maximize both their total consumption during foraging, bumblebees forage early in the morning, while honey bees forage during the afternoo ------------------------------ Date: Fri, 12 Jun 2020 10:07:58 -0400 From: "**Reading Head Start**" Subject: Open up... Open up... http://nutring.digital/i_CWDnYlaBmSMp3FR7ECZwjnB2GKg_HUBOHVFctHrMTR41e6 http://nutring.digital/Edz1oPITykz15YAUobTyv_BD3XJGg_0l0uzWzbVIy7_e7Aqq Some insect micropredators migrate regularly from one host to another. The hawthorn-carrot aphid overwinters on its primary host, a hawthorn tree, and migrates during the summer to its secondary host, a plant in the carrot family. Host range The host range is the set of hosts that a parasite can use as a partner. In the case of human parasites, the host range influences the epidemiology of the parasitism or disease. For instance, the production of antigenic shifts in Influenza A virus can result from pigs being infected with the virus from several different hosts (such as human and bird). This co-infection provides an opportunity for mixing of the viral genes between existing strains, thereby producing a new viral strain. An influenza vaccine produced against an existing viral strain might not be effective against this new strain, which then requires a new influenza vaccine to be prepared for the protection of the human population. Non-parasitic associations Mutualistic hosts Further information: Mutualism (biology) Mycorrhiza, a mutualistic interaction between a plant's roots and a fungus Some hosts participate in fully mutualistic interactions with both organisms being completely dependent on the other. For example, termites are hosts to the protozoa that live in their gut and which digest cellulose, and the human gut flora is essential for efficient digestion. Many corals and other marine invertebrates house zooxanthellae, single-celled algae, in their tissues. The host provides a protected environment in a well-lit position for the algae, while benefiting itself from the nutrients produced by photosynthesis which supplement its diet. Lamellibrachia luymesi, a deep sea giant tubeworm, has an obligate mutualistic association with internal, sulfide-oxidizing, bacterial symbionts. The tubeworm extracts the chemicals that the bacteria need from the sediment, and the bacteria supply the tubeworm, which has no mouth, with nutrients. Some hermit crabs place pieces of sponge on the shell in which they are living. These grow over and eventually dissolve away the mollusc shell; the crab may not ever need to replace its abode again and is well-camouflaged by the overgrowth of sponge. An important hosting relationship is mycorrhiza, a symbiotic association between a fungus and the roots of a vascular host plant. The fungus receives carbohydrates, the products of photosynthesis, while the plant receives phosphates and nitrogenous compounds acquired by the fungus from the soil. Over 95% of plant families have been shown to have mycorrhizal associations. Another such relationship is between leguminous plants and certain nitrogen-fixing bacteria called rhizobia that form nodules on the roots of the plant. The host supplies the bacteria with the energy needed for nitrogen fixation and the bacteria provide much of the nitrogen needed by the host. Such crops as beans, peas, chickpeas and alfalfa are able to fix nitrogen in this way, and mixing clover with grasses increases the yield of pastures. Cleaning symbiosis: a Hawaiian cleaner wrasse with its client, a yellowtail wrasse Hosts in cleaning symbiosis Further information: Cleaning symbiosis and Cleaner fish Hosts of many species are involved in cleaning symbiosis, both in the sea and on land, making use of smaller animals to clean them of parasites. Cleaners include fish, shrimps and birds; hosts or clients include a much wider range of fish, marine reptiles including turtles and iguanas, octopus, whales, and terrestrial mammals. The host appears to benefit from the interaction, but biologists have disputed whether this is a truly mutualistic relationship or something closer to ------------------------------ End of alt.music.moxy-fruvous digest V14 #4326 **********************************************