From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #4308 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Wednesday, June 10 2020 Volume 14 : Number 4308 Today's Subjects: ----------------- Pending: Your FREE Range Bag ["Free Pistol Bag" ] ---------------------------------------------------------------------- Date: Tue, 9 Jun 2020 05:48:04 -0400 From: "Free Pistol Bag" Subject: Pending: Your FREE Range Bag Pending: Your FREE Range Bag http://milff.digital/lXO7ebdzIjN-Q7vMpGn3l5vHBE--DK2lAboTmN5upPY_rGI http://milff.digital/43TwcG9oBR5r5uNvGLJVzyZ8olm8HtdTEyhsAObxh_CBOkQc Chemoreception is important for the detection of food, habitat, conspecifics including mates, and predators. For example, the emissions of a predator's food source, such as odors or pheromones, may be in the air or on a surface where the food source has been. Cells in the head, usually the air passages or mouth, have chemical receptors on their surface that change when in contact with the emissions. It passes in either chemical or electrochemical form to the central processor, the brain or spinal cord. The resulting output from the CNS (central nervous system) makes body actions that will engage the food and enhance survival.[citation needed] Physiology Carotid bodies and aortic bodies detect changes primarily in pCO2 and H+ ion concentration. They also sense decrease in partial pressure of O2, but to a lesser degree than for pCO2 andH+ion concentration. The chemoreceptor trigger zone is an area of the medulla in the brain that receives inputs from blood-borne drugs or hormones, and communicates with the vomiting center (area postrema) to induce vomiting.[citation needed] Control of breathing Particular chemoreceptors, called ASICs, detect the levels of carbon dioxide in the blood. To do this, they monitor the concentration of hydrogen ions in the blood, which decrease the pH of the blood. This can be a direct consequence of an increase in carbon dioxide concentration, because aqueous carbon dioxide in the presence of carbonic anhydrase reacts to form a proton and a bicarbonate ion.[citation needed] The response is that the respiratory centre (in the medulla), sends nervous impulses to the external intercostal muscles and the diaphragm, via the intercostal nerve and the phrenic nerve, respectively, to increase breathing rate and the volume of the lungs during inhalation. Chemoreceptors that regulate the depth and rhythm of breathing are broken down into two categories.[citation needed] central chemoreceptors are located on the ventrolateral surface of medulla oblongata and detect changes in pH of cerebrospinal fluid. They have also been shown experimentally to respond to hypercapnic hypoxia (elevated CO 2, decreased O2), and eventually desensitize[citation needed] . These are sensitive to pH and CO 2.[citation needed] peripheral chemoreceptors: consists of aortic and carotid bodies. Aortic body detects changes in blood oxygen and carbon dioxide, but not pH, while carotid body detects all three. They do not desensitize. Their effect on breathing rate is less than that of the central chemoreceptors.[citation needed] Heart rate The response to stimulation of chemoreceptors on the heart rate is complicated. Chemoreceptors in the heart or nearby large arteries, as well as chemoreceptors in the lungs, can affect heart rate. Activation of these peripheral chemoreceptors from sensing decreased O2, increased CO2 and a decreased pH is relayed to cardiac centers by the vagus and glossopharyngeal nerves to the medulla of the brainstem. This increases the sympathetic nervous stimulation on the heart and a corresponding increase in heart rate and contractility in most cases. These factors include activation of stretch receptors due to increased ventilation and the release of circulating catecholamines. However, if respiratory activity is arrested (e.g. in a patient with a high cervical spinal cord injury), then the primary cardiac reflex to transient hypercapnia and hypoxia is a profound bradycardia and coronary vasodilation through vagal stimulation and systemic vasoconstriction by sympathetic stimulation. In normal cases, if there is reflexive increase in respiratory activity in response to chemoreceptor activation, the increased sympathetic activity on the cardiovascular system would act to increase heart rate and contractility. ------------------------------ Date: Tue, 09 Jun 2020 02:05:12 +0200 From: Shop Survey Subject: Shop Big with a $50 Amazon Gift Card [TABLE NOT SHOWN] ------------------------------ End of alt.music.moxy-fruvous digest V14 #4308 **********************************************