From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #4305 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Tuesday, June 9 2020 Volume 14 : Number 4305 Today's Subjects: ----------------- More Effective Than Aspirin?! ["**5 Myths of CBD**" <5MythsofCBD@complete] Give you more range without sacrificing speed or adding hassle. ["Wifi bo] ---------------------------------------------------------------------- Date: Tue, 9 Jun 2020 08:07:26 -0400 From: "**5 Myths of CBD**" <5MythsofCBD@completes.today> Subject: More Effective Than Aspirin?! More Effective Than Aspirin?! http://completes.today/lJ8J2t0_G1xQKGsby_q3AETFCYY_qN0PwYyXP58NECzqYP09 http://completes.today/hcIMJpF7CnyHDhZ59ypRKX3PditpC1ow2UctT-z8jymei3oC pressure at the centre of an anticyclones pushes down on the water and is associated with abnormally low tides while low-pressure areas may cause extremely high tides. A storm surge can occur when high winds pile water up against the coast in a shallow area and this, coupled with a low pressure system, can raise the surface of the sea at high tide dramatically. In 1900, Galveston, Texas experienced a 15 ft (5 m) surge during a hurricane that overwhelmed the city, killing over 3,500 people and destroying 3,636 homes. Ocean basins Three types of plate boundary The Earth is composed of a magnetic central core, a mostly liquid mantle and a hard rigid outer shell (or lithosphere), which is composed of the Earth's rocky crust and the deeper mostly solid outer layer of the mantle. On land the crust is known as the continental crust while under the sea it is known as the oceanic crust. The latter is composed of relatively dense basalt and is some five to ten kilometres (three to six miles) thick. The relatively thin lithosphere floats on the weaker and hotter mantle below and is fractured into a number of tectonic plates. In mid-ocean, magma is constantly being thrust through the seabed between adjoining plates to form mid-oceanic ridges and here convection currents within the mantle tend to drive the two plates apart. Parallel to these ridges and nearer the coasts, one oceanic plate may slide beneath another oceanic plate in a process known as subduction. Deep trenches are formed here and the process is accompanied by friction as the plates grind together. The movement proceeds in jerks which cause earthquakes, heat is produced and magma is forced up creating underwater mountains, some of which may form chains of volcanic islands near to deep trenches. Near some of the boundaries between the land and sea, the slightly denser oceanic plates slide beneath the continental plates and more subduction trenches are formed. As they grate together, the continental plates are deformed and buckle causing mountain building and seismic activity. The Earth's deepest trench is the Mariana Trench which extends for about 2,500 kilometres (1,600 mi) across the seabed. It is near the Mariana Islands, a volcanic archipelago in the West Pacific, and though it averages just 68 kilometres (42 mi) wide, its deepest point is 10.994 kilometres (nearly 7 miles) below the surface of the sea. An even longer trench runs alongside the coast of Peru and Chile, reaching a depth of 8,065 metres (26,460 ft) and extending for approximately 5,900 kilometres (3,700 mi). It occurs where the oceanic Nazca Plate slides under the continental South American Plate and is associated with the upthrust and volcanic activity of the Andes. Coasts Praia da Marinha in Algarve, Portugal The zone where land meets sea is known as the coast and the part between the lowest spring tides and the upper limit reached by splashing waves is the shore. A beach is the accumulation of sand or shingle on the shore. A headland is a point of land jutting out into the sea and a larger promontory is known as a cape. The indentation of a coastline, especially between two headlands, is a bay, a small bay with a narrow inlet is a cove and a large bay may be referred to as a gulf. Coastlines are influenced by a number of factors including the strength of the waves arriving on the shore, the gradient of the land margin, the composition and hardness of the coastal rock, the inclination of the off-shore slope and the changes of the level of the land due to local uplift or submergence. Normally, waves roll towards the shore at the rate of six to eight per minute and these are known as constructive waves as they tend to move material up the beach and have little erosive effect. Storm waves arrive on shore in rapid succession and are known as destructive waves as the swash moves beach material seawards. Under their influence, the sand and shingle on the beach is ground together and abraded. Around high tide, the power of a storm wave impacting on the foot of a cliff has a shattering effect as air in cracks and crevices is compressed and then expands rapidly with release of pressure. At the same time, sand and pebbles have an erosive effect as they are thrown against the rocks. This tends to undercut the cliff, and normal weathering processes such as the action of frost follows, causing further destruction. Gradually, a wave-cut platform develops at the foot of the cliff and this has a protective effect, reducing further wave-erosion. Material worn from the margins of the land eventually ends up in the sea. Here it is subject to attrition as currents flowing parallel to the coast scour out channels and transport sand and pebbles away from their place of origin. Sediment carried to the sea by rivers settles on the seabed causing deltas to form in estuaries. All these materials move back and forth under the influence of waves, tides and currents. Dredging removes material and deepens channels but may have unexpected effects elsewhere on the coastline. Governments make efforts to prevent flooding of the land by the building of breakwaters, seawalls, dykes and levees and other sea defences. For instance, the Thames Barrier is designed to protect London from a storm surge, while the failure of the dykes and levees around New Orleans during Hurricane Katrina created a humanitarian crisis in the United States. Land reclamation in Hong Kong also permitted the construction of Hong Kong International Airport through the leveling and expansion of two ------------------------------ Date: Tue, 9 Jun 2020 08:52:25 -0400 From: "Wifi booster" Subject: Give you more range without sacrificing speed or adding hassle. Give you more range without sacrificing speed or adding hassle. http://moneyboost.icu/fubT0GU2ev_wVuLHcasy2RlcyWRnW2FtQlJC_Z6gxnKgNh-r http://moneyboost.icu/DpcWALP216xS69Dlg9jv0Jpf7F1zeMYLgqRx7i8ljL7L9T7x Wind blowing over the surface of the sea causes friction at the interface between air and sea. Not only does this cause waves to form but it also makes the surface seawater move in the same direction as the wind. Although winds are variable, in any one place they predominantly blow from a single direction and thus a surface current can be formed. Westerly winds are most frequent in the mid-latitudes while easterlies dominate the tropics. When water moves in this way, other water flows in to fill the gap and a circular movement of surface currents known as a gyre is formed. There are five main gyres in the world's oceans: two in the Pacific, two in the Atlantic and one in the Indian Ocean. Other smaller gyres are found in lesser seas and a single gyre flows around Antarctica. These gyres have followed the same routes for millennia, guided by the topography of the land, the wind direction and the Coriolis effect. The surface currents flow in a clockwise direction in the Northern Hemisphere and anticlockwise in the Southern Hemisphere. The water moving away from the equator is warm, and that flowing in the reverse direction has lost most of its heat. These currents tend to moderate the Earth's climate, cooling the equatorial region and warming regions at higher latitudes. Global climate and weather forecasts are powerfully affected by the world ocean, so global climate modelling makes use of ocean circulation models as well as models of other major components such as the atmosphere, land surfaces, aerosols and sea ice. Ocean models make use of a branch of physics, geophysical fluid dynamics, that describes the large-scale flow of fluids such as seawater. Map showing the global conveyor belt The global conveyor belt shown in blue with warmer surface currents in red Surface currents only affect the top few hundred metres (yards) of the sea, but there are also large-scale flows in the ocean depths caused by the movement of deep water masses. A main deep ocean current flows through all the world's oceans and is known as the thermohaline circulation or global conveyor belt. This movement is slow and is driven by differences in density of the water caused by variations in salinity and temperature. At high latitudes the water is chilled by the low atmospheric temperature and becomes saltier as sea ice crystallizes out. Both these factors make it denser, and the water sinks. From the deep sea near Greenland, such water flows southwards between the continental landmasses on either side of the Atlantic. When it reaches the Antarctic, it is joined by further masses of cold, sinking water and flows eastwards. It then splits into two streams that move northwards into the Indian and Pacific Oceans. Here it is gradually warmed, becomes less dense, rises towards the surface and loops back on itself. It takes a thousand years for this circulation pattern to be completed. Besides gyres, there are temporary surface currents that occur under specific conditions. When waves meet a shore at an angle, a longshore current is created as water is pushed along parallel to the coastline. The water swirls up onto the beach at right angles to the approaching waves but drains away straight down the slope under the effect of gravity. The larger the breaking waves, the longer the beach and the more oblique the wave approach, the stronger is the longshore current. These currents can shift great volumes of sand or pebbles, create spits and make beaches disappear and water channels silt up. A rip current can occur when water piles up near the shore from advancing waves and is funnelled out to sea through a channel in the seabed. It may occur at a gap in a sandbar or near a man-made structure such as a groyne. These strong currents can have a velocity of 3 ft (0.9 m) per second, can form at different places at different stages of the tide and can carry away unwary bathers. Temporary upwelling currents occur when the wind pushes water away from the land and deeper water rises to replace it. This cold water is often rich in nutrients and creates blooms of phytoplankton and a ------------------------------ End of alt.music.moxy-fruvous digest V14 #4305 **********************************************