From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #4271 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Wednesday, June 3 2020 Volume 14 : Number 4271 Today's Subjects: ----------------- Giveaway Time! Free Tactical Pen (Today only) ["Survival Tool" Subject: Giveaway Time! Free Tactical Pen (Today only) Giveaway Time! Free Tactical Pen (Today only) http://inksave.guru/_j4L11ikSn1xp2CV8i_MNhb9tEaI4vI3ZzXKBkDiLtib7FhE http://inksave.guru/I2ZFS40-8Di7TXfWYXIHB7vWmUfpyQOWjdtz8wrRHH1PmSM Many gymnosperms have thin needle-like or scale-like leaves that can be advantageous in cold climates with frequent snow and frost. These are interpreted as reduced from megaphyllous leaves of their Devonian ancestors. Some leaf forms are adapted to modulate the amount of light they absorb to avoid or mitigate excessive heat, ultraviolet damage, or desiccation, or to sacrifice light-absorption efficiency in favor of protection from herbivory. For xerophytes the major constraint is not light flux or intensity, but drought. Some window plants such as Fenestraria species and some Haworthia species such as Haworthia tesselata and Haworthia truncata are examples of xerophytes. and Bulbine mesembryanthemoides. Leaves also function to store chemical energy and water (especially in succulents) and may become specialized organs serving other functions, such as tendrils of peas and other legumes, the protective spines of cacti and the insect traps in carnivorous plants such as Nepenthes and Sarracenia. Leaves are the fundamental structural units from which cones are constructed in gymnosperms (each cone scale is a modified megaphyll leaf known as a sporophyll):408 and from which flowers are constructed in flowering plants.:445 Vein skeleton of a leaf. Veins contain lignin that make them harder to degrade for microorganisms. The internal organization of most kinds of leaves has evolved to maximize exposure of the photosynthetic organelles, the chloroplasts, to light and to increase the absorption of carbon dioxide while at the same time controlling water loss. Their surfaces are waterproofed by the plant cuticle and gas exchange between the mesophyll cells and the atmosphere is controlled by minute (length and width measured in tens of B5m) openings called stomata which open or close to regulate the rate exchange of carbon dioxide, oxygen, and water vapor into and out of the internal intercellular space system. Stomatal opening is controlled by the turgor pressure in a pair of guard cells that surround the stomatal aperture. In any square centimeter of a plant leaf, there may be from 1,000 to 100,000 stomata. Near the ground these Eucalyptus saplings have juvenile dorsiventral foliage from the previous year, but this season their newly sprouting foliage is isobilateral, like the mature foliage on the adult trees above The shape and structure of leaves vary considerably from species to species of plant, depending largely on their adaptation to climate and available light, but also to other factors such as grazing animals (such as deer), available nutrients, and ecological competition from other plants. Considerable changes in leaf type occur within species, too, for example as a plant matures; as a case in point Eucalyptus species commonly have isobilateral, pendent leaves when mature and dominating their neighbors; however, such trees tend to have erect or horizontal dorsiventral leaves as seedlings, when their growth is limited by the available light. Other factors include the need to balance water loss at high temperature and low humidity against the need to absorb atmospheric carbon dioxide. In most plants, leaves also are the primary organs responsible for transpiration and guttation (beads of fluid forming at leaf margins). Leaves can also store food and water, and are modified accordingly to meet these functions, for example in the leaves of succulent plants and in bulb scales. The concentration of photosynthetic structures in leaves requires that they be richer in protein, minerals, and sugars than, say, woody stem tissues. Accordingly, leaves are prominent in the diet of many animals. A leaf shed in autumn. Correspondingly, leaves represent heavy investment on the part of the plants bearing them, and their retention or disposition are the subject of elaborate strategies for dealing with pest pressures, seasonal conditions, and protective measures such as the growth of thorns and the production of phytoliths, lignins, tannins and poisons. Deciduous plants in frigid or cold temperate regions typically shed their leaves in autumn, whereas in areas with a severe dry season, some plants may shed their leaves until the dry season ends. In either case, the shed leaves may be expected to contribute their retained nutrients to the soil where they fall. In contrast, many other non-seasonal plants, such as palms and conifers, retain their leaves for long ------------------------------ Date: Tue, 2 Jun 2020 18:07:52 -0400 From: "Multi Language Translator" Subject: Speak any language in seconds! This email must be viewed in HTML mode. ------------------------------ End of alt.music.moxy-fruvous digest V14 #4271 **********************************************