From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #4251 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Saturday, May 30 2020 Volume 14 : Number 4251 Today's Subjects: ----------------- The Most Dangerous Food In America? ["Dr. Theodore Diktaban" Subject: The Most Dangerous Food In America? The Most Dangerous Food In America? http://remedie.guru/ea9Vqmlqf8dsGK-ZfE2gYDs2gzGSNiO6XXgRqZ3gWFg_2MTp http://remedie.guru/upda0k5_pImaOgmAOC6V_q-kEuYV2I67EWmcMCojNf2dpzI_ Within the time-frame of the capacitance change (as much as 50 ms at 20 Hz audio signal), the charge is practically constant and the voltage across the capacitor changes instantaneously to reflect the change in capacitance. The voltage across the capacitor varies above and below the bias voltage. The voltage difference between the bias and the capacitor is seen across the series resistor. The voltage across the resistor is amplified for performance or recording. In most cases, the electronics in the microphone itself contribute no voltage gain as the voltage differential is quite significant, up to several volts for high sound levels. Since this is a very high impedance circuit, only current gain is usually needed, with the voltage remaining constant. AKG C451B small-diaphragm condenser microphone RF condenser microphones use a comparatively low RF voltage, generated by a low-noise oscillator. The signal from the oscillator may either be amplitude modulated by the capacitance changes produced by the sound waves moving the capsule diaphragm, or the capsule may be part of a resonant circuit that modulates the frequency of the oscillator signal. Demodulation yields a low-noise audio frequency signal with a very low source impedance. The absence of a high bias voltage permits the use of a diaphragm with looser tension, which may be used to achieve wider frequency response due to higher compliance. The RF biasing process results in a lower electrical impedance capsule, a useful by-product of which is that RF condenser microphones can be operated in damp weather conditions that could create problems in DC-biased microphones with contaminated insulating surfaces. The Sennheiser "MKH" series of microphones use the RF biasing technique. A covert, remotely energised application of the same physical principle was devised by Soviet Russian inventor LC)on Theremin and used to bug the US Ambassador's Residence in Moscow between 1945 and 1952. Condenser microphones span the range from telephone transmitters through inexpensive karaoke microphones to high-fidelity recording microphones. They generally produce a high-quality audio signal and are now the popular choice in laboratory and recording studio applications. The inherent suitability of this technology is due to the very small mass that must be moved by the incident sound wave, unlike other microphone types that require the sound wave to do more work. They require a power source, provided either via microphone inputs on equipment as phantom power or from a small battery. Power is necessary for establishing the capacitor plate voltage and is also needed to power the microphone electronics (impedance conversion in the case of electret and DC-polarized microphones, demodulation or detection in the case of RF/HF microphones). Condenser microphones are also available with two diaphragms that can be electrically connected to provide a range of polar patterns (see below), such as cardioid, omnidirectional, and figure-eight. It is also possible to vary the pattern continuously with some microphones, for example, the RC8de NT2000 or CAD M179. A valve microphone is a condenser microphone that uses a vacuum tube (valve) amplifier. They remain popular with enthusiasts of tube sound. ------------------------------ Date: Sat, 30 May 2020 07:08:21 -0400 From: "My Total Home Protection" Subject: Click here and save $50 on every home warranty! Click here and save $50 on every home warranty! http://ketomale.guru/ERxEk40xGMz_nrQVETmyzsFUfpcjWqD29PGjCbJZZeSKXkH9 http://ketomale.guru/OxMpbsVn5yYuv9rKZLARSI06uSu62bEGotmxdIBwdlGqRCOh The middle ear consists of a small air-filled chamber that is located medial to the eardrum. Within this chamber are the three smallest bones in the body, known collectively as the ossicles which include the malleus, incus, and stapes (also known as the hammer, anvil, and stirrup, respectively). They aid in the transmission of the vibrations from the eardrum into the inner ear, the cochlea. The purpose of the middle ear ossicles is to overcome the impedance mismatch between air waves and cochlear waves, by providing impedance matching. Also located in the middle ear are the stapedius muscle and tensor tympani muscle, which protect the hearing mechanism through a stiffening reflex. The stapes transmits sound waves to the inner ear through the oval window, a flexible membrane separating the air-filled middle ear from the fluid-filled inner ear. The round window, another flexible membrane, allows for the smooth displacement of the inner ear fluid caused by the entering sound waves. Inner ear The inner ear is a small but very complex organ. Main article: Inner ear The inner ear consists of the cochlea, which is a spiral-shaped, fluid-filled tube. It is divided lengthwise by the organ of Corti, which is the main organ of mechanical to neural transduction. Inside the organ of Corti is the basilar membrane, a structure that vibrates when waves from the middle ear propagate through the cochlear fluid b endolymph. The basilar membrane is tonotopic, so that each frequency has a characteristic place of resonance along it. Characteristic frequencies are high at the basal entrance to the cochlea, and low at the apex. Basilar membrane motion causes depolarization of the hair cells, specialized auditory receptors located within the organ of Corti. While the hair cells do not produce action potentials themselves, they release neurotransmitter at synapses with the fibers of the auditory nerve, which does produce action potentials. In this way, the patterns of oscillations on the basilar membrane are converted to spatiotemporal patterns of firings which transmit information about the sound to the brainstem. Neuronal The lateral lemnisci (red) connects lower brainstem auditory nuclei to the inferior colliculus in the midbrain. Main article: Neuronal encoding of sound The sound information from the cochlea travels via the auditory nerve to the cochlear nucleus in the brainstem. From there, the signals are projected to the inferior colliculus in the midbrain tectum. The inferior colliculus integrates auditory input with limited input from other parts of the brain and is involved in subconscious reflexes such as the auditory startle response. The inferior colliculus in turn projects to the medial geniculate nucleus, a part of the thalamus where sound information is relayed to the primary auditory cortex in the temporal lobe. Sound is believed to first become consciously experienced at the primary auditory cortex. Around the primary auditory cortex lies Wernickes area, a cortical area involved in interpreting sounds that is necessary to understand spoken words. ------------------------------ Date: Sat, 30 May 2020 08:27:50 -0400 From: "Challenge Coins" Subject: The perfect gift for loved ones, or something unique The perfect gift for loved ones, or something unique http://stayinhome.us/tW7dOPnaYM_xQ0imigqp-mkIeqYZz0mMSJg-2UDf0O6OKxJr http://stayinhome.us/CMH6_lKbqMqazEu94XtaHl6bnFqlxJFOKMgB8u9fB_J8JFk Loudness is perceived as how "loud" or "soft" a sound is and relates to the totalled number of auditory nerve stimulations over short cyclic time periods, most likely over the duration of theta wave cycles. This means that at short durations, a very short sound can sound softer than a longer sound even though they are presented at the same intensity level. Past around 200 ms this is no longer the case and the duration of the sound no longer affects the apparent loudness of the sound. Figure 3 gives an impression of how loudness information is summed over a period of about 200 ms before being sent to the auditory cortex. Louder signals create a greater 'push' on the Basilar membrane and thus stimulate more nerves, creating a stronger loudness signal. A more complex signal also creates more nerve firings and so sounds louder (for the same wave amplitude) than a simpler sound, such as a sine wave. Timbre Figure 4. Timbre perception Timbre is perceived as the quality of different sounds (e.g. the thud of a fallen rock, the whir of a drill, the tone of a musical instrument or the quality of a voice) and represents the pre-conscious allocation of a sonic identity to a sound (e.g. bit's an oboe!"). This identity is based on information gained from frequency transients, noisiness, unsteadiness, perceived pitch and the spread and intensity of overtones in the sound over an extended time frame. The way a sound changes over time (see figure 4) provides most of the information for timbre identification. Even though a small section of the wave form from each instrument looks very similar (see the expanded sections indicated by the orange arrows in figure 4), differences in changes over time between the clarinet and the piano are evident in both loudness and harmonic content. Less noticeable are the different noises heard, such as air hisses for the clarinet and hammer strikes for the piano. Sonic texture Sonic texture relates to the number of sound sources and the interaction between them. The word 'texture', in this context, relates to the cognitive separation of auditory objects. In music, texture is often referred to as the difference between unison, polyphony and homophony, but it can also relate (for example) to a busy cafe; a sound which might be referred to as 'cacophony'. However texture refers to more than this. The texture of an orchestral piece is very different from the texture of a brass quintet because of the different numbers of players. The texture of a market place is very different from a school hall because of the differences in the various ------------------------------ Date: Sat, 30 May 2020 07:23:26 -0400 From: "Free Shipping Low Carb" Subject: Hey, where do we ship your FREE protein? Hey, where do we ship your FREE protein? http://stayinhome.us/UZIcn2IVZBrDPG1xogvoTA83hJ2zd-_Mw53a18WWUD3cqdk http://stayinhome.us/PHT_k6-XZxahYR5eZLMRT5CEK2-pfgtPEbMpaP_GYahmkRX4 The inability to see is called blindness. Blindness may result from damage to the eyeball, especially to the retina, damage to the optic nerve that connects each eye to the brain, and/or from stroke (infarcts in the brain). Temporary or permanent blindness can be caused by poisons or medications. People who are blind from degradation or damage to the visual cortex, but still have functional eyes, are actually capable of some level of vision and reaction to visual stimuli but not a conscious perception; this is known as blindsight. People with blindsight are usually not aware that they are reacting to visual sources, and instead just unconsciously adapt their behavior to the stimulus. On February 14, 2013 researchers developed a neural implant that gives rats the ability to sense infrared light which for the first time provides living creatures with new abilities, instead of simply replacing or augmenting existing abilities. Visual Perception in Psychology Main article: Gestalt psychology According to Gestalt Psychology, people perceive the whole of something even if it is not there. The Gestaltbs Law of Organization states that people have seven factors that help to group what is seen into patterns or groups: Common Fate, Similarity, Proximity, Closure, Symmetry, Continuity, and Past Experience. The Law of Common fate says that objects are led along the smoothest path. People follow the trend of motion as the lines/dots flow. The Law of Similarity refers to the grouping of images or objects that are similar to each other in some aspect. This could be due to shade, colour, size, shape, or other qualities you could distinguish. The Law of Proximity states that our minds like to group based on how close objects are to each other. We may see 42 objects in a group, but we can also perceive three groups of two lines with seven objects in each line. The Law of Closure is the idea that we as humans still see a full picture even if there are gaps within that picture. There could be gaps or parts missing from a section of a shape, but we would still perceive the shape as whole. The Law of Symmetry refers to a person's preference to see symmetry around a central point. An example would be when we use parentheses in writing. We tend to perceive all of the words in the parentheses as one section instead of individual words within the parentheses. The Law of Continuity tells us that objects are grouped together by their elements and then perceived as a whole. This usually happens when we see overlapping objects.We will see the overlapping objects with no interruptions. The Law of Past Experience refers to the tendency humans have to categorize objects according to past experiences under certain circumstances. If two objects are usually perceived together or within close proximity of each other the Law of Past Experience is usually see ------------------------------ Date: Sat, 30 May 2020 09:18:13 -0400 From: "Keravita Pro Basic" Subject: Drink This Before Bedtime To Destroy Nail & Skin Fungus Overnight Drink This Before Bedtime To Destroy Nail & Skin Fungus Overnight http://antisoap.guru/i2bXuWuTRO81iP-lAtRKwwQn13fdnIZJgim_9MFqjIzQd793 http://antisoap.guru/FC2mBWQL1SF_xot7tll13P1Zm_zTsORDDIQkMX3zycZ1MvSr Loudness is perceived as how "loud" or "soft" a sound is and relates to the totalled number of auditory nerve stimulations over short cyclic time periods, most likely over the duration of theta wave cycles. This means that at short durations, a very short sound can sound softer than a longer sound even though they are presented at the same intensity level. Past around 200 ms this is no longer the case and the duration of the sound no longer affects the apparent loudness of the sound. Figure 3 gives an impression of how loudness information is summed over a period of about 200 ms before being sent to the auditory cortex. Louder signals create a greater 'push' on the Basilar membrane and thus stimulate more nerves, creating a stronger loudness signal. A more complex signal also creates more nerve firings and so sounds louder (for the same wave amplitude) than a simpler sound, such as a sine wave. Timbre Figure 4. Timbre perception Timbre is perceived as the quality of different sounds (e.g. the thud of a fallen rock, the whir of a drill, the tone of a musical instrument or the quality of a voice) and represents the pre-conscious allocation of a sonic identity to a sound (e.g. bit's an oboe!"). This identity is based on information gained from frequency transients, noisiness, unsteadiness, perceived pitch and the spread and intensity of overtones in the sound over an extended time frame. The way a sound changes over time (see figure 4) provides most of the information for timbre identification. Even though a small section of the wave form from each instrument looks very similar (see the expanded sections indicated by the orange arrows in figure 4), differences in changes over time between the clarinet and the piano are evident in both loudness and harmonic content. Less noticeable are the different noises heard, such as air hisses for the clarinet and hammer strikes for the piano. Sonic texture Sonic texture relates to the number of sound sources and the interaction between them. The word 'texture', in this context, relates to the cognitive separation of auditory objects. In music, texture is often referred to as the difference between unison, polyphony and homophony, but it can also relate (for example) to a busy cafe; a sound which might be referred to as 'cacophony'. However texture refers to more than this. The texture of an orchestral piece is very different from the texture of a brass quintet because of the different numbers of players. The texture of a market place is very different from a school hall because of the differences in the various ------------------------------ End of alt.music.moxy-fruvous digest V14 #4251 **********************************************