From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #4250 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Saturday, May 30 2020 Volume 14 : Number 4250 Today's Subjects: ----------------- If You Have Aging Vision, STOP EATING CARROTS ["Failing Eyesight" ] ---------------------------------------------------------------------- Date: Sat, 30 May 2020 08:01:58 -0400 From: "Failing Eyesight" Subject: If You Have Aging Vision, STOP EATING CARROTS If You Have Aging Vision, STOP EATING CARROTS http://ketomale.guru/-L7b0ubQRi2XuWutdWNqEqy1UbqIxnmhY2DkpQqRTLDp4XVF http://ketomale.guru/dAvoxQYQ5yYKQn4AbfXtMY3NwF8KIlW7AUOr02apgXzuLxkJ A distinct use of the term sound from its use in physics is that in physiology and psychology, where the term refers to the subject of perception by the brain. The field of psychoacoustics is dedicated to such studies. Webster's 1936 dictionary defined sound as: "1. The sensation of hearing, that which is heard; specif.: a. Psychophysics. Sensation due to stimulation of the auditory nerves and auditory centers of the brain, usually by vibrations transmitted in a material medium, commonly air, affecting the organ of hearing. b. Physics. Vibrational energy which occasions such a sensation. Sound is propagated by progressive longitudinal vibratory disturbances (sound waves)." This means that the correct response to the question: "if a tree falls in the forest with no one to hear it fall, does it make a sound?" is "yes", and "no", dependent on whether being answered using the physical, or the psychophysical definition, respectively. The physical reception of sound in any hearing organism is limited to a range of frequencies. Humans normally hear sound frequencies between approximately 20 Hz and 20,000 Hz (20 kHz),:382 The upper limit decreases with age.:249 Sometimes sound refers to only those vibrations with frequencies that are within the hearing range for humans or sometimes it relates to a particular animal. Other species have different ranges of hearing. For example, dogs can perceive vibrations higher than 20 kHz. As a signal perceived by one of the major senses, sound is used by many species for detecting danger, navigation, predation, and communication. Earth's atmosphere, water, and virtually any physical phenomenon, such as fire, rain, wind, surf, or earthquake, produces (and is characterized by) its unique sounds. Many species, such as frogs, birds, marine and terrestrial mammals, have also developed special organs to produce sound. In some species, these produce song and speech. Furthermore, humans have developed culture and technology (such as music, telephone and radio) that allows them to generate, record, transmit, and broadcast sound. Noise is a term often used to refer to an unwanted sound. In science and engineering, noise is an undesirable component that obscures a wanted signal. However, in sound perception it can often be used to identify the source of a sound and is an important component of timbre perception (see above). Soundscape is the component of the acoustic environment that can be perceived by humans. The acoustic environment is the combination of all sounds (whether audible to humans or not) within a given area as modified by the environment and understood by people, in context of the surrounding environment. There are, historically, six experimentally separable ways in which sound waves are analysed. They are: pitch, duration, loudness, timbre, sonic texture and spatial location. Some of these terms have a standardised definition (for instance in the ANSI Acoustical Terminology ANSI/ASA S1.1-2013). More recent approaches have also considered temporal envelope and temporal fine structure as perceptually ------------------------------ Date: Sat, 30 May 2020 10:07:38 -0400 From: "TV Booster" Subject: Crystal clear HD quality Crystal clear HD quality http://onlymale.live/DZvaiKfM8mw3z0PdgWMJkUIguyuAVAGeuSMQBWYSM4FqyGsY http://onlymale.live/AB98UnQ4cfzL5cQQKVOD0L3MSLfIbn3fB8fOVd93d-BOToNt Infrasound is one of several techniques used to identify if a nuclear detonation has occurred. A network of 60 infrasound stations, in addition to seismic and hydroacoustic stations, comprise the International Monitoring System (IMS) that is tasked with monitoring compliance with the Comprehensive Nuclear Test-Ban Treaty (CTBT). IMS Infrasound stations consist of eight microbarometer sensors and space filters arranged in an array covering an area of approximately 1 to 9 km2. The space filters used are radiating pipes with inlet ports along their length, designed to average out pressure variations like wind turbulence for more precise measurements. The microbarometers used are designed to monitor frequencies below approximately 20 hertz. Sound waves below 20 hertz have longer wavelengths and are not easily absorbed, allowing for detection across large distances. Infrasound wavelengths can be generated artificially through detonations and other human activity, or naturally from earthquakes, severe weather, lightning, and other sources. Like forensic seismology, algorithms and other filter techniques are required to analyze gathered data and characterize events to determine if a nuclear detonation has actually occurred. Data is transmitted from each station via secure communication links for further analysis. A digital signature is also embedded in the data sent from each station to verify if the data is authentic. Detection and measurement NASA Langley has designed and developed an infrasonic detection system that can be used to make useful infrasound measurements at a location where it was not possible previously. The system comprises an electret condenser microphone PCB Model 377M06, having a 3-inch membrane diameter, and a small, compact windscreen. Electret-based technology offers the lowest possible background noise, because Johnson noise generated in the supporting electronics (preamplifier) is minimized. The microphone features a high membrane compliance with a large backchamber volume, a prepolarized backplane and a high impedance preamplifier located inside the backchamber. The windscreen, based on the high transmission coefficient of infrasound through matter, is made of a material having a low acoustic impedance and has a sufficiently thick wall to ensure structural stability. Close-cell polyurethane foam has been found to serve the purpose well. In the proposed test, test parameters will be sensitivity, background noise, signal fidelity (harmonic distortion), and temporal stability. The microphone design differs from that of a conventional audio system in that the peculiar features of infrasound are taken into account. First, infrasound propagates over vast distances through the Earth's atmosphere as a result of very low atmospheric absorption and of refractive ducting that enables propagation by way of multiple bounces between the Earth's surface and the stratosphere. A second property that has received little attention is the great penetration capability of infrasound through solid matter b a property utilized in the design and fabrication of the system windscreens. Thus the system fulfills several instrumentation requirements advantageous to the application of acoustics: (1) a low-frequency microphone with especially low background noise, which enables detection of low-level signals within a low-frequency passband; (2) a small, compact windscreen that permits (3) rapid deployment of a microphone array in the field. The system also features a data acquisition system that ------------------------------ End of alt.music.moxy-fruvous digest V14 #4250 **********************************************