From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #4246 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Friday, May 29 2020 Volume 14 : Number 4246 Today's Subjects: ----------------- Easy to use, low energy use and Lightweight ["Dangerous Mosquitos" Subject: Easy to use, low energy use and Lightweight Easy to use, low energy use and Lightweight http://workserve.guru/O3xotx2jdyVjrXtac8183zssD9d1ZGg4pcV5mF7c_p36LXgN http://workserve.guru/mH5PWz5zX8vpQhRDAtxmhij7DpDGWWvONNwCiUWPEH6DjhHi The wireless revolution began in the 1990s, with the advent of digital wireless networks leading to a social revolution, and a paradigm shift from wired to wireless technology, including the proliferation of commercial wireless technologies such as cell phones, mobile telephony, pagers, wireless computer networks, cellular networks, the wireless Internet, and laptop and handheld computers with wireless connections. The wireless revolution has been driven by advances in radio frequency (RF) and microwave engineering, and the transition from analog to digital RF technology, which enabled a substantial increase in voice traffic along with the delivery of digital data such as text messaging, images and streaming media. The core component of this revolution is the MOSFET (metal-oxide-semiconductor field-effect transistor, or MOS transistor). Power MOSFETs such as LDMOS (lateral-diffused MOS) are used in RF power amplifiers to boost RF signals to a level that enables long-distance wireless network access for consumers, while RF CMOS (radio frequency CMOS) circuits are used in radio transceivers to transmit and receive wireless signals at low cost and with low power consumption. The MOSFET is the basic building block of modern wireless networks, including mobile networks such as 2G, 3G, 4G and 5G. Most of the essential elements in modern wireless networks are built from MOSFETs, including the base station modules, routers, RF circuits, radio transceivers, transmitters, and RF power amplifiers. MOSFET scaling is also the primary factor behind rapidly increasing wireless network bandwidth, which has been doubling every 18 months, as noted by Edholm's law. The MOSFET was invented by Mohamed Atalla and Dawon Kahng at Bell Labs in 1959. Its very large-scale integration (VLSI) capability led to wide adoption for digital integrated circuit chips by the early 1970s, but it was initially not the most effective transistor for analog RF technology where the older bipolar junction transistor (BJT) remained dominant up until the 1980s. A gradual shift began with the emergence of power MOSFETs, which are discrete MOS power devices designed for power electronic applications, including the vertical power MOSFET by Hitachi in 1969, the VDMOS (vertical-diffused MOS) by John Moll's research team at HP Labs in 1977, and the LDMOS by Hitachi in 1977. MOSFETs began to be used for RF applications in the 1970s. RF CMOS, which are RF circuits that use mixed-signal (digital and analog) MOS integrated circuit technology and are fabricated using the CMOS process, was later developed by Asad Abidi at UCLA in the late 1980s. By the early 1990s, the MOSFET had replaced the BJT as the core component of RF technology, leading to a revolution in wireless technology. There was a rapid growth of the wireless telecommunications industry towards the end of the 20th century, primarily due to the introduction of digital signal processing in wireless communications, driven by the development of low-cost, very large-scale integration (VLSI) RF CMOS technology. Power MOSFET devices, particularly the LDMOS, also became the standard RF power amplifier technology, which led to the development and proliferation of digital wireless networks. RF CMOS integrated circuits enabled sophisticated, low-cost and portable end-user terminals, and gave rise to small, low-cost, low-power and portable units for a wide range of wireless communication systems. This enabled "anytime, anywhere" communication and helped bring about the wireless revolution, leading to the rapid growth of the wireless industry. RF CMOS is used in the radio transceivers of all modern wireless networking devices and mobile phones, and is widely used to transmit and receive wireless signals in a variety of applications, such as satellite technology (e.g. GPS), bluetooth, Wi-Fi, near-field communication (NFC), mobile networks (e.g. 3G and 4G), terrestrial broadcast, and automotive radar applications, among other uses ------------------------------ Date: Wed, 27 May 2020 06:18:16 -0400 From: "DateCuteRussian" <**DateCuteRussian**@maskprotect.guru> Subject: Are you Man Enough For A Russian Babe Are you Man Enough For A Russian Babe http://maskprotect.guru/RvI20Zg7eMX39Ra8NMBHVHG3ysPgeHroLC3hrJbPIFeYDomc http://maskprotect.guru/cz9cMiP3qA1vC-LPRe2ZJAh8sEgYufd3a8XE-i-O-Bfap9GF Because water molecules absorb microwaves and other radio wave frequencies, water in the atmosphere attenuates radar signals. In addition, atmospheric water will reflect and refract signals to an extent that depends on whether it is vapor, liquid or solid. Generally, radar signals lose strength progressively the farther they travel through the troposphere. Different frequencies attenuate at different rates, such that some components of air are opaque to some frequencies and transparent to others. Radio waves used for broadcasting and other communication experience the same effect. Water vapor reflects radar to a lesser extent than do water's other two phases. In the form of drops and ice crystals, water acts as a prism, which it does not do as an individual molecule; however, the existence of water vapor in the atmosphere causes the atmosphere to act as a giant prism. A comparison of GOES-12 satellite images shows the distribution of atmospheric water vapor relative to the oceans, clouds and continents of the Earth. Vapor surrounds the planet but is unevenly distributed. The image loop on the right shows monthly average of water vapor content with the units are given in centimeters, which is the precipitable water or equivalent amount of water that could be produced if all the water vapor in the column were to condense. The lowest amounts of water vapor (0 centimeters) appear in yellow, and the highest amounts (6 centimeters) appear in dark blue. Areas of missing data appear in shades of gray. The maps are based on data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on NASA's Aqua satellite. The most noticeable pattern in the time series is the influence of seasonal temperature changes and incoming sunlight on water vapor. In the tropics, a band of extremely humid air wobbles north and south of the equator as the seasons change. This band of humidity is part of the Intertropical Convergence Zone, where the easterly trade winds from each hemisphere converge and produce near-daily thunderstorms and clouds. Farther from the equator, water vapor concentrations are high in the hemisphere experiencing summer and low in the one experiencing winter. Another pattern that shows up in the time series is that water vapor amounts over land areas decrease more in winter months than adjacent ocean areas do. This is largely because air temperatures over land drop more in the winter than temperatures over the ocean. Water vapor condenses more rapidly in colder air. As water vapor absorbs light in the visible spectral range, its absorption can be used in spectroscopic applications (such as DOAS) to determine the amount of water vapor in the atmosphere. This is done operationally, e.g. from the GOME spectrometers on ERS and MetOp. The weaker water vapor absorption lines in the blue spectral range and further into the UV up to its dissociation limit around 243 nm are mostly based on quantum mechanical calculations and are only partly confirmed ------------------------------ End of alt.music.moxy-fruvous digest V14 #4246 **********************************************