From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #4243 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Thursday, May 28 2020 Volume 14 : Number 4243 Today's Subjects: ----------------- No hazardous chemicals or smelly scents. ["Flying Pests" Subject: No hazardous chemicals or smelly scents. No hazardous chemicals or smelly scents. http://thermomask.us/Z35rvjdYKzWUzqnO2HQe-NtVzIUSlOsHJ467MoHX-FwM8JdW http://thermomask.us/IS1aR7un51_90NMdid7ecsZOaILFAFSKK_AQKGwlnunpDtRJ The response curve as a function of wavelength varies for each type of cone. Because the curves overlap, some tristimulus values do not occur for any incoming light combination. For example, it is not possible to stimulate only the mid-wavelength (so-called "green") cones; the other cones will inevitably be stimulated to some degree at the same time. The set of all possible tristimulus values determines the human color space. It has been estimated that humans can distinguish roughly 10 million different colors. The other type of light-sensitive cell in the eye, the rod, has a different response curve. In normal situations, when light is bright enough to strongly stimulate the cones, rods play virtually no role in vision at all. On the other hand, in dim light, the cones are understimulated leaving only the signal from the rods, resulting in a colorless response. (Furthermore, the rods are barely sensitive to light in the "red" range.) In certain conditions of intermediate illumination, the rod response and a weak cone response can together result in color discriminations not accounted for by cone responses alone. These effects, combined, are summarized also in the Kruithof curve, that describes the change of color perception and pleasingness of light as function of temperature and intensity. Color in the brain Main article: Color vision The visual dorsal stream (green) and ventral stream (purple) are shown. The ventral stream is responsible for color perception. While the mechanisms of color vision at the level of the retina are well-described in terms of tristimulus values, color processing after that point is organized differently. A dominant theory of color vision proposes that color information is transmitted out of the eye by three opponent processes, or opponent channels, each constructed from the raw output of the cones: a redbgreen channel, a bluebyellow channel, and a blackbwhite "luminance" channel. This theory has been supported by neurobiology, and accounts for the structure of our subjective color experience. Specifically, it explains why humans cannot perceive a "reddish green" or "yellowish blue", and it predicts the color wheel: it is the collection of colors for which at least one of the two color channels measures a value at one of its extremes. The exact nature of color perception beyond the processing already described, and indeed the status of color as a feature of the perceived world or rather as a feature of our perception of the worldba type of qualiabis a matter of complex and continuing philosophical dispute. ------------------------------ End of alt.music.moxy-fruvous digest V14 #4243 **********************************************