From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #4236 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Thursday, May 28 2020 Volume 14 : Number 4236 Today's Subjects: ----------------- Protect your eyes from harmful UV and blue light. ["Dial Vision" Subject: Protect your eyes from harmful UV and blue light. Protect your eyes from harmful UV and blue light. http://hotground.buzz/P4hWjED9SyfcartANwRrF3S4H0_a4nhzD38wmEdC52GYNg http://hotground.buzz/BnIh5ndHfZrssCpTOJnwEIsWv7DP3T-B9BDYtRGJ0ZqhlA Liquid is one of the four primary states of matter, with the others being solid, gas and plasma. A liquid is a fluid. Unlike a solid, the molecules in a liquid have a much greater freedom to move. The forces that bind the molecules together in a solid are only temporary in a liquid, allowing a liquid to flow while a solid remains rigid. A liquid, like a gas, displays the properties of a fluid. A liquid can flow, assume the shape of a container, and, if placed in a sealed container, will distribute applied pressure evenly to every surface in the container. If liquid is placed in a bag, it can be squeezed into any shape. Unlike a gas, a liquid is nearly incompressible, meaning that it occupies nearly a constant volume over a wide range of pressures; it does not generally expand to fill available space in a container but forms its own surface, and it may not always mix readily with another liquid. These properties make a liquid suitable for applications such as hydraulics. Liquid particles are bound firmly but not rigidly. They are able to move around one another freely, resulting in a limited degree of particle mobility. As the temperature increases, the increased vibrations of the molecules causes distances between the molecules to increase. When a liquid reaches its boiling point, the cohesive forces that bind the molecules closely together break, and the liquid changes to its gaseous state (unless superheating occurs). If the temperature is decreased, the distances between the molecules become smaller. When the liquid reaches its freezing point the molecules will usually lock into a very specific order, called crystallizing, and the bonds between them become more rigid, changing the liquid into its solid state (unless supercooling occurs). Examples Only two elements are liquid at standard conditions for temperature and pressure: mercury and bromine. Four more elements have melting points slightly above room temperature: francium, caesium, gallium and rubidium. Metal alloys that are liquid at room temperature include NaK, a sodium-potassium metal alloy, galinstan, a fusible alloy liquid, and some amalgams (alloys involving mercury). Pure substances that are liquid under normal conditions include water, ethanol and many other organic solvents. Liquid water is of vital importance in chemistry and biology; it is believed to be a necessity for the existence of life. Inorganic liquids include water, magma, inorganic nonaqueous solvents and many acids. Important everyday liquids include aqueous solutions like household bleach, other mixtures of different substances such as mineral oil and gasoline, emulsions like vinaigrette or mayonnaise, suspensions like blood, and colloids like paint and milk. Many gases can be liquefied by cooling, producing liquids such as liquid oxygen, liquid nitrogen, liquid hydrogen and liquid helium. Not all gases can be liquified at atmospheric pressure, however. Carbon ------------------------------ Date: Wed, 27 May 2020 08:49:52 -0400 From: "**Trump 2020 Stiletto**" Subject: These 2 Items Would Make Our Founding Fathers Proud These 2 Items Would Make Our Founding Fathers Proud http://resurge.guru/j5OnRL5i1kmIzQk5en7qCFNc9Pe-djKTEHE4IyyGPWN9PMUj http://resurge.guru/D_vBK2Cpc3miNWEN7lT7_t4he6RdYWK7-37HT-pgCQDGZK0K In a well-known but probably apocryphal tale, Archimedes was given the task of determining whether King Hiero's goldsmith was embezzling gold during the manufacture of a golden wreath dedicated to the gods and replacing it with another, cheaper alloy. Archimedes knew that the irregularly shaped wreath could be crushed into a cube whose volume could be calculated easily and compared with the mass; but the king did not approve of this. Baffled, Archimedes is said to have taken an immersion bath and observed from the rise of the water upon entering that he could calculate the volume of the gold wreath through the displacement of the water. Upon this discovery, he leapt from his bath and ran naked through the streets shouting, "Eureka! Eureka!" (??????! Greek "I have found it"). As a result, the term "eureka" entered common parlance and is used today to indicate a moment of enlightenment. The story first appeared in written form in Vitruvius' books of architecture, two centuries after it supposedly took place. Some scholars have doubted the accuracy of this tale, saying among other things that the method would have required precise measurements that would have been difficult to make at the time. From the equation for density (? = m/V), mass density has units of mass divided by volume. As there are many units of mass and volume covering many different magnitudes there are a large number of units for mass density in use. The SI unit of kilogram per cubic metre (kg/m3) and the cgs unit of gram per cubic centimetre (g/cm3) are probably the most commonly used units for density. One g/cm3 is equal to 1000 kg/m3. One cubic centimetre (abbreviation cc) is equal to one millilitre. In industry, other larger or smaller units of mass and or volume are often more practical and US customary units may be used. See below for a list of some of the most common units of density. Measurement of density A number of techniques as well as standards exist for the measurement of density of materials. Such techniques include the use of a hydrometer (a buoyancy method for liquids), Hydrostatic balance (a buoyancy method for liquids and solids), immersed body method (a buoyancy method for liquids), pycnometer (liquids and solids), air comparison pycnometer (solids), oscillating densitometer (liquids), as well as pour and tap (solids). However, each individual method or technique measures different types of density (e.g. bulk density, skeletal density, etc.), and therefore it is necessary to have an understanding of the type of density being measured as well as the type of material in question. Homogeneous materials The density at all points of a homogeneous object equals its total mass divided by its total volume. The mass is normally measured with a scale or balance; the volume may be measured directly (from the geometry of the object) or by the displacement of a fluid. To determine the density of a liquid or a gas, a hydrometer, a dasymeter or a Coriolis flow meter may be used, respectively. Similarly, hydrostatic weighing uses the displacement of water due to a submerged object to determine the density of the object. ------------------------------ Date: Wed, 27 May 2020 10:58:40 -0400 From: "Diabetes Protocol" Subject: Why The Ancient Chinese Never Got Diabetes Why The Ancient Chinese Never Got Diabetes http://workserve.guru/aqUGBYFDPyZux9UpXZjxWDdsaHI0Ndvkhgcg9kQU9_E7rpdL http://workserve.guru/o0jEAcBr-9mio_zBgQdgja69zpA07xaNL5ycRLrhc7dyVZGh Cellular data service offers coverage within a range of 10-15 miles from the nearest cell site. Speeds have increased as technologies have evolved, from earlier technologies such as GSM, CDMA and GPRS, through 3G, to 4G networks such as W-CDMA, EDGE or CDMA2000. As of 2018, the proposed next generation is 5G. Low-power wide-area networks (LPWAN) bridge the gap between Wi-Fi and Cellular for low bitrate Internet of things (IoT) applications. Mobile-satellite communications may be used where other wireless connections are unavailable, such as in largely rural areas or remote locations. Satellite communications are especially important for transportation, aviation, maritime and military use. Wireless sensor networks are responsible for sensing noise, interference, and activity in data collection networks. This allows us to detect relevant quantities, monitor and collect data, formulate clear user displays, and to perform decision-making functions Wireless data communications are used to span a distance beyond the capabilities of typical cabling in point-to-point communication and point-to-multipoint communication, to provide a backup communications link in case of normal network failure, to link portable or temporary workstations, to overcome situations where normal cabling is difficult or financially impractical, or to remotely connect mobile users or networks. Peripherals Peripheral devices in computing can also be connected wirelessly, as part of a Wi-Fi network or directly via an optical or radio-frequency (RF) peripheral interface. Originally these units used bulky, highly local transceivers to mediate between a computer and a keyboard and mouse; however, more recent generations have used smaller, higher-performance devices. Radio-frequency interfaces, such as Bluetooth or Wireless USB, provide greater ranges of efficient use, usually up to 10 feet, but distance, physical obstacles, competing signals, and even human bodies can all degrade the signal quality. Concerns about the security of wireless keyboards arose at the end of 2007, when it was revealed that Microsoft's implementation of encryption in some of its 27 MHz models was highly insecure. Energy transfer Main article: Wireless energy transfer Wireless energy transfer is a process whereby electrical energy is transmitted from a power source to an electrical load that does not have a built-in power source, without the use of interconnecting wires. There are two different fundamental methods for wireless energy transfer. Energy can be transferred using either far-field methods that involve beaming power/lasers, radio or microwave transmissions or near-field using electromagnetic induction. Wireless energy transfer may be combined with wireless information transmission in what is known as Wireless Powered Communicatio ------------------------------ End of alt.music.moxy-fruvous digest V14 #4236 **********************************************