From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #4171 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Sunday, May 17 2020 Volume 14 : Number 4171 Today's Subjects: ----------------- Keeping track of your healtgh has never been easier with the intuitive GX SmartWatch [" Amazing SmartWatch" Subject: Keeping track of your healtgh has never been easier with the intuitive GX SmartWatch This email must be viewed in HTML mode. ------------------------------ Date: Thu, 14 May 2020 12:31:38 -0400 From: "piano4all" Subject: Now Anyone Can Learn Piano or Keyboard Now Anyone Can Learn Piano or Keyboard http://incredibles.guru/HYliVWDB5OqSST3oFpLuKDq2sYPfg0-nEQOCWG34RNkJT-1j http://incredibles.guru/PRh01ISbX_cW_mjhlICIEgO8zQPQYYkiTrKCzB3EVWhuuWg In a child's developing brain, lead interferes with synapse formation in the cerebral cortex, neurochemical development (including that of neurotransmitters), and the organization of ion channels. Early childhood exposure has been linked with an increased risk of sleep disturbances and excessive daytime drowsiness in later childhood. High blood levels are associated with delayed puberty in girls. The rise and fall in exposure to airborne lead from the combustion of tetraethyl lead in gasoline during the 20th century has been linked with historical increases and decreases in crime levels, a hypothesis which is not universally accepted. Exposure sources Lead exposure is a global issue since lead mining and smelting, and battery manufacturing/disposal/recycling, are common in many countries. Lead enters the body via inhalation, ingestion, or skin absorption. Almost all inhaled lead is absorbed into the body; for ingestion, the rate is 20b70%, with children absorbing a higher percentage than adults. Poisoning typically results from ingestion of food or water contaminated with lead, and less commonly after accidental ingestion of contaminated soil, dust, or lead-based paint. Seawater products can contain lead if affected by nearby industrial waters. Fruit and vegetables can be contaminated by high levels of lead in the soils they were grown in. Soil can be contaminated through particulate accumulation from lead in pipes, lead paint, and residual emissions from leaded gasoline. The use of lead for water pipes is a problem in areas with soft or acidic water. Hard water forms insoluble layers in the pipes whereas soft and acidic water dissolves the lead pipes. Dissolved carbon dioxide in the carried water may result in the formation of soluble lead bicarbonate; oxygenated water may similarly dissolve lead as lead(II) hydroxide. Drinking such water, over time, can cause health problems due to the toxicity of the dissolved lead. The harder the water the more calcium bicarbonate and sulfate it will contain, and the more the inside of the pipes will be coated with a protective layer of lead carbonate or lead sulfate. Kymographic recording of the effect of lead acetate on frog heart experimental set up. Ingestion of applied lead-based paint is the major source of exposure for children: a direct source is chewing on old painted window sills. Alternatively, as the applied dry paint deteriorates, it peels, is pulverized into dust and then enters the body through hand-to-mouth contact or contaminated food, water, or alcohol. Ingesting certain ------------------------------ Date: Thu, 14 May 2020 09:41:36 -0400 From: "Infrared Thermometer" Subject: Accurate temperature reading in seconds. Accurate temperature reading in seconds. http://boosts.live/jDmhUtDBmejLjn9KDUoQOVWC4VhbhF3egpNADb1FcAiuyY8 http://boosts.live/SVXQ-RjuKDPYVUh_Fr691cmKmqxGCCb2J4XQpDFHzWsaBR8 structures, and respond to their environments. (The word metabolism can also refer to the sum of all chemical reactions that occur in living organisms, including digestion and the transport of substances into and between different cells, in which case the above described set of reactions within the cells is called intermediary metabolism or intermediate metabolism). Metabolic reactions may be categorized as catabolic b the breaking down of compounds (for example, the breaking down of glucose to pyruvate by cellular respiration); or anabolic b the building up (synthesis) of compounds (such as proteins, carbohydrates, lipids, and nucleic acids). Usually, catabolism releases energy, and anabolism consumes energy. The chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. Enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. Enzymes act as catalysts b they allow a reaction to proceed more rapidly b and they also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell's environment or to signals from other cells. The metabolic system of a particular organism determines which substances it will find nutritious and which poisonous. For example, some prokaryotes use hydrogen sulfide as a nutrient, yet this gas is poisonous to animals. The basal metabolic rate of an organism is the measure of the amount of energy consumed by all of these chemical reactions. A striking feature of metabolism is the similarity of the basic metabolic pathways among vastly different species. For example, the set of carboxylic acids that are best known as the intermediates in the citric acid cycle are present in all known organisms, being found in species as diverse as the unicellular bacterium Escherichia coli and huge multicellular organisms like elephants. These similarities in metabolic pathways are likely due to their early appearance in evolutionary ------------------------------ Date: Thu, 14 May 2020 08:13:35 -0400 From: "Antenna" Subject: Why Super Smartwave Anntenna Is For You..? Why Super Smartwave Anntenna Is For You..? http://eatt.guru/JuX6sS22u0s5MkeGFdNnBw1x5T9jR31iYmfM_BtwmbvYmKOl http://eatt.guru/pqaiiMSxtlW7rnuAww7h7EPIe_8AlOBE5pkRhSro89CYvPQ of the volume of which only half will be available to most plants, with a strong variation according to matric potential. A flooded field will drain the gravitational water under the influence of gravity until water's adhesive and cohesive forces resist further drainage at which point it is said to have reached field capacity. At that point, plants must apply suction to draw water from a soil. The water that plants may draw from the soil is called the available water. Once the available water is used up the remaining moisture is called unavailable water as the plant cannot produce sufficient suction to draw that water in. At 15 bar suction, wilting point, seeds will not germinate, plants begin to wilt and then die. Water moves in soil under the influence of gravity, osmosis and capillarity. When water enters the soil, it displaces air from interconnected macropores by buoyancy, and breaks aggregates into which air is entrapped, a process called slaking. The rate at which a soil can absorb water depends on the soil and its other conditions. As a plant grows, its roots remove water from the largest pores (macropores) first. Soon the larger pores hold only air, and the remaining water is found only in the intermediate- and smallest-sized pores (micropores). The water in the smallest pores is so strongly held to particle surfaces that plant roots cannot pull it away. Consequently, not all soil water is available to plants, with a strong dependence on texture. When saturated, the soil may lose nutrients as the water drains. Water moves in a draining field under the influence of pressure where the soil is locally saturated and by capillarity pull to drier parts of the soil. Most plant water needs are supplied from the suction caused by evaporation from plant leaves (transpiration) and a lower fraction is supplied by suction created by osmotic pressure differences between the plant interior and the soil solution. Plant roots must seek out water and grow preferentially in moister soil microsites, but some parts of the root system are also able to remoisten dry parts of the soil. Insufficient water will damage the yield of a crop. Most of the available water is used in transpiration to pull nutrients into the plant. Soil water is also important for climate modeling and numerical weather prediction. Global Climate Observing System specified soil water as one of the 50 Essential Climate Variables (ECVs). Soil water can be measured in situ with soil moisture sensor or can be estimated from satellite data and hydrological models. Each method exhibits pros and cons, and hence, the integration of different techniques may ------------------------------ End of alt.music.moxy-fruvous digest V14 #4171 **********************************************