From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #3716 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Saturday, March 7 2020 Volume 14 : Number 3716 Today's Subjects: ----------------- Your Prostate Is the Size Of A Lemon ["Prostate Research" Subject: Your Prostate Is the Size Of A Lemon Your Prostate Is the Size Of A Lemon http://certifiedstate.cam/VVv4bpEl4kwmonMXxA8ia5XX259x0F1ArtQiweT2gJMdf5QD http://certifiedstate.cam/K9bE33q-gJAl5tf4SerhCDrgvZgN6q95ld9mX_HU1ubIeQo The vast majority of organisms encode their genes in long strands of DNA (deoxyribonucleic acid). DNA consists of a chain made from four types of nucleotide subunits, each composed of: a five-carbon sugar (2-deoxyribose), a phosphate group, and one of the four bases adenine, cytosine, guanine, and thymine.:2.1 Two chains of DNA twist around each other to form a DNA double helix with the phosphate-sugar backbone spiralling around the outside, and the bases pointing inwards with adenine base pairing to thymine and guanine to cytosine. The specificity of base pairing occurs because adenine and thymine align to form two hydrogen bonds, whereas cytosine and guanine form three hydrogen bonds. The two strands in a double helix must therefore be complementary, with their sequence of bases matching such that the adenines of one strand are paired with the thymines of the other strand, and so on.:4.1 Due to the chemical composition of the pentose residues of the bases, DNA strands have directionality. One end of a DNA polymer contains an exposed hydroxyl group on the deoxyribose; this is known as the 3' end of the molecule. The other end contains an exposed phosphate group; this is the 5' end. The two strands of a double-helix run in opposite directions. Nucleic acid synthesis, including DNA replication and transcription occurs in the 5'?3' direction, because new nucleotides are added via a dehydration reaction that uses the exposed 3' hydroxyl as a nucleophile.:27.2 The expression of genes encoded in DNA begins by transcribing the gene into RNA, a second type of nucleic acid that is very similar to DNA, but whose monomers contain the sugar ribose rather than deoxyribose. RNA also contains the base uracil in place of thymine. RNA molecules are less stable than DNA and are typically single-stranded. Genes that encode proteins are composed of a series of three-nucleotide sequences called codons, which serve as the "words" in the genetic "language". The genetic code specifies the correspondence during protein translation between codons and amino acids. The genetic code is nearly the same for all known organisms ------------------------------ Date: Fri, 6 Mar 2020 09:31:53 -0500 From: "Blessings on Demand" <7DayPrayerMiracle@massiday.cam> Subject: The meaning for your existence! The meaning for your existence! http://massiday.cam/iinhl066Dy1L3nOhzKr2tv0elPku3Cu-TgwRmt1Rw9k3pV9v http://massiday.cam/UicGGKsRGQqmbrH1SiE7arP_90ySIr-F-dniXDl1Y7K7Z_jw The reds, orange and yellow colors of many feathers are caused by various carotenoids. Carotenoid-based pigments might be honest signals of fitness because they are derived from special diets and hence might be difficult to obtain, and/or because carotenoids are required for immune function and hence sexual displays come at the expense of health. A bird's feathers undergo wear and tear and are replaced periodically during the bird's life through molting. New feathers, known when developing as blood, or pin feathers, depending on the stage of growth, are formed through the same follicles from which the old ones were fledged. The presence of melanin in feathers increases their resistance to abrasion. One study notes that melanin based feathers were observed to degrade more quickly under bacterial action, even compared to unpigmented feathers from the same species, than those unpigmented or with carotenoid pigments. However, another study the same year compared the action of bacteria on pigmentations of two song sparrow species and observed that the darker pigmented feathers were more resistant; the authors cited other research also published in 2004 that stated increased melanin provided greater resistance. They observed that the greater resistance of the darker birds confirmed Gloger's rule. Although sexual selection plays a major role in the development of feathers, in particular the color of the feathers it is not the only conclusion available. New studies are suggesting that the unique feathers of birds is also a large influence on many important aspects of avian behavior, such as the height at which a different species build their nests. Since females are the prime care givers, evolution has helped select females to display duller colored down so that they may blend into the nesting environment. The position of the nest and whether it has a greater chance of being under predation has exerted constraints on female birds' plumage. A species of bird that nests on the ground, rather than the canopy of the trees, will need to have much duller colors in order not to attract attention to the nest. Since the female is the main care giver in some species of birds, evolution has helped select traits that make her feathers dull and often allow her to blend into the surroundings. The height study found that birds that nest in the canopies of trees often have many more predator attacks due to the brighter color of feathers that the female displays. Another influence of evolution that could play a part in why feathers of birds are so colorful and display so many patterns could be due to that birds developed their bright colors from the vegetation and flowers that thrive around them. Birds develop their bright colors from living around certain colors. Most bird species often blend into their environment, due to some degree of camouflage, so if the species habitat is full of colors and patterns, the species would eventually evolve to blend in to avoid being eaten. Birds' feathers show a l ------------------------------ Date: Fri, 6 Mar 2020 08:58:27 -0500 From: "Blessings on Demand" Subject: The meaning for your existence! The meaning for your existence! http://massiday.cam/oc6alUNrH_ke7yqMU30Z7LJW1sgMM9fifMijlJ0arGbd1oA4 http://massiday.cam/oI5Xu08HFSLXLZhVXJNh1hOlhD9-tLtXIRpipTyK2VyqK5EZ The reds, orange and yellow colors of many feathers are caused by various carotenoids. Carotenoid-based pigments might be honest signals of fitness because they are derived from special diets and hence might be difficult to obtain, and/or because carotenoids are required for immune function and hence sexual displays come at the expense of health. A bird's feathers undergo wear and tear and are replaced periodically during the bird's life through molting. New feathers, known when developing as blood, or pin feathers, depending on the stage of growth, are formed through the same follicles from which the old ones were fledged. The presence of melanin in feathers increases their resistance to abrasion. One study notes that melanin based feathers were observed to degrade more quickly under bacterial action, even compared to unpigmented feathers from the same species, than those unpigmented or with carotenoid pigments. However, another study the same year compared the action of bacteria on pigmentations of two song sparrow species and observed that the darker pigmented feathers were more resistant; the authors cited other research also published in 2004 that stated increased melanin provided greater resistance. They observed that the greater resistance of the darker birds confirmed Gloger's rule. Although sexual selection plays a major role in the development of feathers, in particular the color of the feathers it is not the only conclusion available. New studies are suggesting that the unique feathers of birds is also a large influence on many important aspects of avian behavior, such as the height at which a different species build their nests. Since females are the prime care givers, evolution has helped select females to display duller colored down so that they may blend into the nesting environment. The position of the nest and whether it has a greater chance of being under predation has exerted constraints on female birds' plumage. A species of bird that nests on the ground, rather than the canopy of the trees, will need to have much duller colors in order not to attract attention to the nest. Since the female is the main care giver in some species of birds, evolution has helped select traits that make her feathers dull and often allow her to blend into the surroundings. The height study found that birds that nest in the canopies of trees often have many more predator attacks due to the brighter color of feathers that the female displays. Another influence of evolution that could play a part in why feathers of birds are so colorful and display so many patterns could be due to that birds developed their bright colors from the vegetation and flowers that thrive around them. Birds develop their bright colors from living around certain colors. Most bird species often blend into their environment, due to some degree of camouflage, so if the species habitat is full of colors and patterns, the species would eventually evolve to blend in to avoid being eaten. Birds' feathers show a l ------------------------------ Date: Fri, 6 Mar 2020 10:15:30 -0500 From: "Massive Male Plus Basic" Subject: Any man out there add length and girth in under one minute... Any man out there add length and girth in under one minute... http://massiday.cam/4HYvs90c9LH4lDTziGh2sZK7wo9CKSiXgw5Cl98DCirUyx_J http://massiday.cam/zcxv4ux8Y3NJ7fRbOO2R-RhWANRZmlMDaD_LYSdhy_UnGS9S Feathers are both soft and excellent at trapping heat; thus, they are sometimes used in high-class bedding, especially pillows, blankets, and mattresses. They are also used as filling for winter clothing and outdoor bedding, such as quilted coats and sleeping bags. Goose and eider down have great loft, the ability to expand from a compressed, stored state to trap large amounts of compartmentalized, insulating air. Bird feathers have long been used for fletching arrows. Colorful feathers such as those belonging to pheasants have been used to decorate fishing lures. Feathers of large birds (most often geese) have been and are used to make quill pens. The word pen itself is derived from the Latin penna, meaning feather. The French word plume can mean either feather or pen. Feathers are also valuable in aiding the identification of species in forensic studies, particularly in bird strikes to aircraft. The ratios of hydrogen isotopes in feathers help in determining the geographic origins of birds. Feathers may also be useful in the non-destructive sampling of pollutants. The poultry industry produces a large amount of feathers as waste, which, like other forms of keratin, are slow to decompose. Feather waste has been used in a number of industrial applications as a medium for culturing microbes, biodegradeable polymers, and production of enzymes. Feather proteins have been tried as an adhesive for wood board. Some groups of Native people in Alaska have used ptarmigan feathers as temper (non-plastic additives) in pottery manufacture since the first millennium BC in order to promote thermal shock resistance and strength. The hunting of birds for decorative and ornamental feathers (including in Victorian fashion) has endangered some species.[citation needed] For instance, South American hummingbird feathers were used in the past to dress some of the miniature birds featured in singing bird boxes. ------------------------------ Date: Fri, 6 Mar 2020 08:58:27 -0500 From: "Blessings on Demand" Subject: The meaning for your existence! The meaning for your existence! http://massiday.cam/oc6alUNrH_ke7yqMU30Z7LJW1sgMM9fifMijlJ0arGbd1oA4 http://massiday.cam/oI5Xu08HFSLXLZhVXJNh1hOlhD9-tLtXIRpipTyK2VyqK5EZ The reds, orange and yellow colors of many feathers are caused by various carotenoids. Carotenoid-based pigments might be honest signals of fitness because they are derived from special diets and hence might be difficult to obtain, and/or because carotenoids are required for immune function and hence sexual displays come at the expense of health. A bird's feathers undergo wear and tear and are replaced periodically during the bird's life through molting. New feathers, known when developing as blood, or pin feathers, depending on the stage of growth, are formed through the same follicles from which the old ones were fledged. The presence of melanin in feathers increases their resistance to abrasion. One study notes that melanin based feathers were observed to degrade more quickly under bacterial action, even compared to unpigmented feathers from the same species, than those unpigmented or with carotenoid pigments. However, another study the same year compared the action of bacteria on pigmentations of two song sparrow species and observed that the darker pigmented feathers were more resistant; the authors cited other research also published in 2004 that stated increased melanin provided greater resistance. They observed that the greater resistance of the darker birds confirmed Gloger's rule. Although sexual selection plays a major role in the development of feathers, in particular the color of the feathers it is not the only conclusion available. New studies are suggesting that the unique feathers of birds is also a large influence on many important aspects of avian behavior, such as the height at which a different species build their nests. Since females are the prime care givers, evolution has helped select females to display duller colored down so that they may blend into the nesting environment. The position of the nest and whether it has a greater chance of being under predation has exerted constraints on female birds' plumage. A species of bird that nests on the ground, rather than the canopy of the trees, will need to have much duller colors in order not to attract attention to the nest. Since the female is the main care giver in some species of birds, evolution has helped select traits that make her feathers dull and often allow her to blend into the surroundings. The height study found that birds that nest in the canopies of trees often have many more predator attacks due to the brighter color of feathers that the female displays. Another influence of evolution that could play a part in why feathers of birds are so colorful and display so many patterns could be due to that birds developed their bright colors from the vegetation and flowers that thrive around them. Birds develop their bright colors from living around certain colors. Most bird species often blend into their environment, due to some degree of camouflage, so if the species habitat is full of colors and patterns, the species would eventually evolve to blend in to avoid being eaten. Birds' feathers show a l ------------------------------ Date: Fri, 6 Mar 2020 04:57:50 -0500 From: "Survival Items" Subject: This Overnight Survival Kit can safe your life and I want you to have it for free, seriously! This Overnight Survival Kit can safe your life and I want you to have it for free, seriously! http://heartgov.buzz/4EMRnGd1bAkG8IizU0oOAJ6Cj0WOVydJgXZS5zO7ZTcllYjY http://heartgov.buzz/D_clAHAbUZo6FC38KOxLUn_mPprxieoJlWP_u82Vqz0TRDA There are hereditary as well as non-hereditary variations in plumage that are rare and termed as abnormal or aberrant plumages. Melanism refers to an excess of black or dark colours. Erythromelanism or erythrism is the result of excessive reddish brown erythromelanin deposition in feathers that normally lack melanin. Melanin of different forms combine with xanthophylls to produce colour mixtures and when this combination is imbalanced it produces colour shifts that are termed as schizochroisms (including xanthochromism b overabundance of yellow b and axanthism b lack of yellow b which are commonly bred in cagebirds such as budgerigars). A reduction in eumelanin leads to non-eumelanin schizochroism with an overall fawn plumage while a lack of phaeomelanin results in grey coloured non-phaeomelanin schizochroism. Carotenism refers to abnormal distribution of carotenoid pigments. The term "dilution" is used for situations where the colour is of a lower intensity overall; it is caused by decreased deposition of pigment in the developing feather, and can thus not occur in structural coloration (i.e., "dilute blue" does not exist); pale structural colors are instead achieved by shifting the peak wavelength at which light is refracted. Dilution regularly occurs in normal plumage (grey, buff, pink and cream colours are usually produced by this process), but may in addition occur as an aberration (e.g., all normally black plumage becoming grey). In some birds b many true owls (Strigidae), some nightjars (Caprimulgidae) and a few cuckoos (Cuculus and relatives) being widely known examples b there is colour polymorphism. This means that two or more colour variants are numerous within their populations during all or at least most seasons and plumages; in the above-mentioned examples a brown (phaeomelanin) and grey (eumelanin) morph exist, termed "hepatic form" particularly in the cuckoos. Other cases of natural polymorphism are of various kinds; many are melanic/nonmelanic (some paradise-flycatchers, Terpsiphone, for example), but more unusual types of polymorphism exist b the face colour of the Gouldian finch (Erythrura gouldiae) or the courtship types of male ruffs (Philomachus pugnax ------------------------------ End of alt.music.moxy-fruvous digest V14 #3716 **********************************************