From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #16771 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Sunday, October 5 2025 Volume 14 : Number 16771 Today's Subjects: ----------------- Your Tool Gift Is Ready ["Harbor Freight Rewards" ] ---------------------------------------------------------------------- Date: Sun, 5 Oct 2025 13:16:54 +0200 From: "Harbor Freight Rewards" Subject: Your Tool Gift Is Ready Your Tool Gift Is Ready http://prowarranty.click/-rqooa7l83StpFixHwAw04UwXAjvWIA6ztzvJEGSFAWY2ytl9w http://prowarranty.click/GNR3RQOb-maUAmR9c1zR6EGYxmss1uXGMLGWqGBXv994nKKwPg nts that use the C4 carbon fixation process chemically fix carbon dioxide in the cells of the mesophyll by adding it to the three-carbon molecule phosphoenolpyruvate (PEP), a reaction catalyzed by an enzyme called PEP carboxylase, creating the four-carbon organic acid oxaloacetic acid. Oxaloacetic acid or malate synthesized by this process is then translocated to specialized bundle sheath cells where the enzyme RuBisCO and other Calvin cycle enzymes are located, and where CO2 released by decarboxylation of the four-carbon acids is then fixed by RuBisCO activity to the three-carbon 3-phosphoglyceric acids. The physical separation of RuBisCO from the oxygen-generating light reactions reduces photorespiration and increases CO2 fixation and, thus, the photosynthetic capacity of the leaf. C4 plants can produce more sugar than C3 plants in conditions of high light and temperature. Many important crop plants are C4 plants, including maize, sorghum, sugarcane, and millet. Plants that do not use PEP-carboxylase in carbon fixation are called C3 plants because the primary carboxylation reaction, catalyzed by RuBisCO, produces the three-carbon 3-phosphoglyceric acids directly in the Calvin-Benson cycle. Over 90% of plants use C3 carbon fixation, compared to 3% that use C4 carbon fixation; however, the evolution of C4 in over sixty plant lineages makes it a striking example of convergent evolution. C2 photosynthesis, which involves carbon-concentration by selective breakdown of photorespiratory glycine, is both an evolutionary precursor to C4 and a useful carbon-concentrating mechanism in its own right. Xerophytes, such as cacti and most succulents, also use PEP carboxylase to capture carbon dioxide in a process called Crassulacean acid metabolism (CAM). In contrast to C4 metabolism, which spatially separates the CO2 fixation to PEP from the Calvin cycle, CAM temporally separates these two processes. CAM plants have a different leaf anatomy from C3 plants, and fix the CO2 at night, when their stomata are open. CAM plants store the CO2 mostly in the form of malic acid via carboxylation of phosphoenolpyruvate to oxaloacetate, which is then reduced to malate. Decarboxylation of malate during the day releases CO2 inside the leaves, thus allowing carbon fixation to 3-phosphoglycerate by RuBisCO. CAM is used by 16,000 species of plants. Calcium-oxalate-accumulating plants, such as Amaranthus hybridus and Colobanthus quitensis, show a variation of photosynthesis where calcium oxalate crystals function as dynamic carbon pools, supplying carbon dioxide (CO2) to photosynthetic cells when stomata are partially or totally closed. This process was named alarm photosynthesis. Under stress conditions (e.g., water deficit), oxalate released from calcium oxalate crystals is converted to CO2 by an oxalate oxidase enzyme, and the produced CO2 can support the Calvin cycle reactions. Reactive hydrogen peroxide (H2O2), the byproduct of oxalate oxidase reaction, can be neutralized by catalase. Alarm photosynthesis represents a photosynthetic variant to be added to the well-known C4 and CAM pathways. However, alarm photosynthesis, in contrast to these pathways, operates as a biochemical pump that collects carbon from the organ interior (or from the soil) and not from the atmosph ------------------------------ Date: Sat, 4 Oct 2025 19:25:54 +0200 From: "Latonia" Subject: The TRUTH about Sugar (MUST read...) The TRUTH about Sugar (MUST read...) http://cartably.sbs/1D6l60cRD4aNRBIjabNNiqKUVh2FsxfqfLpmtK--fHZVAYIWmA http://cartably.sbs/3RydPZ1XprZruC2KiUHeKEh7mRD7S7zfWUl6A0eWKMxQXiZBrw he photosynthesis conducted by land plants and algae is the ultimate source of energy and organic material in nearly all ecosystems. Photosynthesis, at first by cyanobacteria and later by photosynthetic eukaryotes, radically changed the composition of the early Earth's anoxic atmosphere, which as a result is now 21% oxygen. Animals and most other organisms are aerobic, relying on oxygen; those that do not are confined to relatively rare anaerobic environments. Plants are the primary producers in most terrestrial ecosystems and form the basis of the food web in those ecosystems. Plants form about 80% of the world biomass at about 450 gigatonnes (4.4C1011 long tons; 5.0C1011 short tons) of carbon. Ecological relationships Main article: Plant ecology Numerous animals have coevolved with plants; flowering plants have evolved pollination syndromes, suites of flower traits that favour their reproduction. Many, including insect and bird partners, are pollinators, visiting flowers and accidentally transferring pollen in exchange for food in the form of pollen or nectar. Many animals disperse seeds that are adapted for such dispersal. Various mechanisms of dispersal have evolved. Some fruits offer nutritious outer layers attractive to animals, while the seeds are adapted to survive the passage through the animal's gut; others have hooks that enable them to attach to a mammal's fur. Myrmecophytes are plants that have coevolved with ants. The plant provides a home, and sometimes food, for the ants. In exchange, the ants defend the plant from herbivores and sometimes competing plants. Ant wastes serve as organic fertilizer. The majority of plant species have fungi associated with their root systems in a mutualistic symbiosis known as mycorrhiza. The fungi help the plants gain water and mineral nutrients from the soil, while the plant gives the fungi carbohydrates manufactured in photosynthesis. Some plants serve as homes for endophytic fungi that protect the plant from herbivores by producing toxins. The fungal endophyte Neotyphodium coenophialum in tall fescue grass has pest status in the American cattle industry. Many legumes have Rhizobium nitrogen-fixing bacteria in nodules of their roots, which fix nitrogen from the air for the plant to use; in return, the plants supply sugars to the bacteria. Nitrogen fixed in this way can become available to other plants, and is important in agriculture; for example, farmers may grow a crop rotation of a legume such as beans, followed by a cereal such as wheat, to provide cash crops with a reduced input of nitrogen fertilizer. Some 1% of plants are parasitic. They range from the semi-parasitic mistletoe that merely takes some nutrients from its host, but still has photosynthetic leaves, to the fully-parasitic broomrape and toothwort that acquire all their nutrients through connections to the roots of other plants, and so have no chlorophyll. Full parasites can be extremely harmful to their plant hosts. Plants that grow on other plants, usually trees, without parasitizing them, are called epiphytes. These may support diverse arboreal ecosystems. Some may indirectly harm their host plant, such as by intercepting light. Hemiepiphytes like the strangler fig begin as epiphytes, but eventually set their own roots and overpower and kill their host. Many orchids, bromeliads, ferns, and mosses grow as epiphytes. Among the epiphytes, the bromeliads accumulate wa ------------------------------ End of alt.music.moxy-fruvous digest V14 #16771 ***********************************************