From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #12428 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Tuesday, October 17 2023 Volume 14 : Number 12428 Today's Subjects: ----------------- Toenail Fungus? Do This Daily And Watch What Happens ["BARE FEET Partner"] ---------------------------------------------------------------------- Date: Tue, 17 Oct 2023 17:05:10 +0200 From: "BARE FEET Partner" Subject: Toenail Fungus? Do This Daily And Watch What Happens Toenail Fungus? Do This Daily And Watch What Happens http://digisurveys.shop/YFGlQP3L_dwMwmvabPuFiWoTQe5rguCZz563rfYEUVNDjxZmbA http://digisurveys.shop/BNnhn5SEkHJFQT8Aq2crq7PweC3F0EKV5vzjibRLAlt2wS52dA A planet's movement around its rotational axis must also meet certain criteria if life is to have the opportunity to evolve. A first assumption is that the planet should have moderate seasons. If there is little or no axial tilt (or obliquity) relative to the perpendicular of the ecliptic, seasons will not occur and a main stimulant to biospheric dynamism will disappear. The planet would also be colder than it would be with a significant tilt: when the greatest intensity of radiation is always within a few degrees of the equator, warm weather cannot move poleward and a planet's climate becomes dominated by colder polar weather systems. If a planet is radically tilted, seasons will be extreme and make it more difficult for a biosphere to achieve homeostasis. The axial tilt of the Earth is higher now (in the Quaternary) than it has been in the past, coinciding with reduced polar ice, warmer temperatures and less seasonal variation. Scientists do not know whether this trend will continue indefinitely with further increases in axial tilt (see Snowball Earth). The exact effects of these changes can only be computer modelled at present, and studies have shown that even extreme tilts of up to 85 degrees do not absolutely preclude life "provided it does not occupy continental surfaces plagued seasonally by the highest temperature." Not only the mean axial tilt, but also its variation over time must be considered. The Earth's tilt varies between 21.5 and 24.5 degrees over 41,000 years. A more drastic variation, or a much shorter periodicity, would induce climatic effects such as variations in seasonal severity. Other orbital considerations include: The planet should rotate relatively quickly so that the day-night cycle is not overlong. If a day takes years, the temperature differential between the day and night side will be pronounced, and problems similar to those noted with extreme orbital eccentricity will come to the fore. The planet also should rotate quickly enough so that a magnetic dynamo may be started in its iron core to produce a magnetic field. Change in the direction of the axis rotation (precession) should not be pronounced. In itself, precession need not affect habitability as it changes the direction of the tilt, not its degree. However, precession tends to accentuate variations caused by other orbital deviations; see Milankovitch cycles. Precession on Earth occurs over a 26,000-year cy ------------------------------ End of alt.music.moxy-fruvous digest V14 #12428 ***********************************************