From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #12426 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Tuesday, October 17 2023 Volume 14 : Number 12426 Today's Subjects: ----------------- Unlock the Secrets to Boosting Your Metabolism - eBook and Video Companion Available Now! ["Metabolism" Subject: Unlock the Secrets to Boosting Your Metabolism - eBook and Video Companion Available Now! Unlock the Secrets to Boosting Your Metabolism - eBook and Video Companion Available Now! http://lowesurvey.shop/MznwKsJv9YnD8vWYFRYVFFMyUehQeWKeKKjmmLP19prJCQWHjA http://lowesurvey.shop/ULJpNQXZe1Qonz1zxb_cuAeaiOgZezxofsfiOvqGvBPYR-rfqg the day side, because the sun does not rise or set, areas in the shadows of mountains would remain so forever. Photosynthesis as we understand it would be complicated by the fact that a red dwarf produces most of its radiation in the infrared, and on the Earth the process depends on visible light. There are potential positives to this scenario. Numerous terrestrial ecosystems rely on chemosynthesis rather than photosynthesis, for instance, which would be possible in a red dwarf system. A static primary star position removes the need for plants to steer leaves toward the sun, deal with changing shade/sun patterns, or change from photosynthesis to stored energy during night. Because of the lack of a day-night cycle, including the weak light of morning and evening, far more energy would be available at a given radiation level. Red dwarfs are far more variable and violent than their more stable, larger cousins. Often they are covered in starspots that can dim their emitted light by up to 40% for months at a time, while at other times they emit gigantic flares that can double their brightness in a matter of minutes. Such variation would be very damaging for life, as it would not only destroy any complex organic molecules that could possibly form biological precursors, but also because it would blow off sizeable portions of the planet's atmosphere. For a planet around a red dwarf star to support life, it would require a rapidly rotating magnetic field to protect it from the flares. A tidally locked planet rotates only very slowly, and so cannot produce a geodynamo at its core. The violent flaring period of a red dwarf's life cycle is estimated to only last roughly the first 1.2 billion years of its existence. If a planet forms far away from a red dwarf so as to avoid tidal locking, and then migrates into the star's habitable zone after this turbulent initial period, it is possible that life may have a chance to develop. However, observations of the 7 to 12-billion year old Barnard's Star showcase that even old red dwarfs can have significant flare activity. Barnard's Star was long assumed to have little activity, but in 1998 astronomers observed an intense stellar flare, showing that it is a ------------------------------ End of alt.music.moxy-fruvous digest V14 #12426 ***********************************************