From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #12425 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Tuesday, October 17 2023 Volume 14 : Number 12425 Today's Subjects: ----------------- How To Get Hard & Stay Hard Naturally ["Going soft" Subject: How To Get Hard & Stay Hard Naturally How To Get Hard & Stay Hard Naturally http://brainsaviors.best/cZ4oM8UEIA9aDOd8pbfe0kK158uBFA4rECyy4xJR_zkha7EHsg http://brainsaviors.best/2mNJtZmWSFJSGg4s-tZpO7sTUxsVA1Gs2qdAzxmjSjSZ_NB4IQ As with other criteria, stability is the critical consideration in evaluating the effect of orbital and rotational characteristics on planetary habitability. Orbital eccentricity is the difference between a planet's farthest and closest approach to its parent star divided by the sum of said distances. It is a ratio describing the shape of the elliptical orbit. The greater the eccentricity the greater the temperature fluctuation on a planet's surface. Although they are adaptive, living organisms can stand only so much variation, particularly if the fluctuations overlap both the freezing point and boiling point of the planet's main biotic solvent (e.g., water on Earth). If, for example, Earth's oceans were alternately boiling and freezing solid, it is difficult to imagine life as we know it having evolved. The more complex the organism, the greater the temperature sensitivity. The Earth's orbit is almost perfectly circular, with an eccentricity of less than 0.02; other planets in the Solar System (with the exception of Mercury) have eccentricities that are similarly benign. Habitability is also influenced by the architecture of the planetary system around a star. The evolution and stability of these systems are determined by gravitational dynamics, which drive the orbital evolution of terrestrial planets. Data collected on the orbital eccentricities of extrasolar planets has surprised most researchers: 90% have an orbital eccentricity greater than that found within the Solar System, and the average is fully 0.25. This means that the vast majority of planets have highly eccentric orbits and of these, even if their average distance from their star is deemed to be within the HZ, they nonetheless would be spending only a small portion of their time within the zon ------------------------------ End of alt.music.moxy-fruvous digest V14 #12425 ***********************************************