From: owner-ammf-digest@smoe.org (alt.music.moxy-fruvous digest) To: ammf-digest@smoe.org Subject: alt.music.moxy-fruvous digest V14 #11853 Reply-To: ammf@fruvous.com Sender: owner-ammf-digest@smoe.org Errors-To: owner-ammf-digest@smoe.org Precedence: bulk alt.music.moxy-fruvous digest Saturday, July 29 2023 Volume 14 : Number 11853 Today's Subjects: ----------------- Boost Your Energy and Vitality with Our Liver Discovery ["Liver Secret" <] ---------------------------------------------------------------------- Date: Sat, 29 Jul 2023 16:34:02 +0200 From: "Liver Secret" Subject: Boost Your Energy and Vitality with Our Liver Discovery Boost Your Energy and Vitality with Our Liver Discovery http://starbuckssurveyz.shop/PjB3Mm8QfiHVPAewcELmmLEAoV_B8OwzfHX31oymh60_z9pSig http://starbuckssurveyz.shop/aOZKRti4Ql1obOu1Q09d5dY5mfIFOTYyEiCdYFqjSh3lk613jQ Studies on noise barriers have shown mixed results on their ability to effectively reduce noise pollution. Electric and hybrid vehicles could reduce noise pollution, but only if those vehicles make up a high proportion of total vehicles on the road; even if traffic in an urban area reached a makeup of fifty percent electric vehicles, the overall noise reduction achieved would only be a few decibels and would be barely noticeable. Highway noise is today less affected by motor type, since the effects in higher speed are aerodynamic and tire noise related. Other contributions to the reduction of noise at the source are: improved tire tread designs for trucks in the 1970s, better shielding of diesel stacks in the 1980s, and local vehicle regulation of unmuffled vehicles. The most fertile areas for roadway noise mitigation are in urban planning decisions, roadway design, noise barrier design, speed control, surface pavement selection, and truck restrictions. Speed control is effective since the lowest sound emissions arise from vehicles moving smoothly at 30 to 60 kilometers per hour. Above that range, sound emissions double with every five miles per hour of speed. At the lowest speeds, braking and (engine) acceleration noise dominates. Selection of road surface pavement can make a difference of a factor of two in sound levels, for the speed regime above 30 kilometers per hour. Quieter pavements are porous with a negative surface texture and use small to medium-sized aggregates; the loudest pavements have transversely-grooved surfaces, positive surface textures, and larger aggregates. Surface friction and roadway safety are important considerations as well for pavement decisions. When designing new urban freeways or arterials, there are numerous design decisions regarding alignment and roadway geometrics. Use of a computer model to calculate sound levels has become standard practice since the early 1970s. In this way exposure of sensitive receptors to elevated sound levels can be minimized. An analogous process exists for urban mass transit systems and other rail transportation decisions. Early examples of urban rail systems designed using this technology were: Boston MBTA line expansions (1970s), San Francisco BART system expansion (1981), Houston METRORail system (1982), and the MAX Light Rail system in Portland, Oregon (1983). Noise barriers can be applied to existing or planned surface transportation projects. They are one of the most effective actions taken in retrofitting existing roadways and commonly can reduce adjacent land-use sound levels by up to ten decibels. A computer model is required to design the barrier since terrain, micrometeorology and other locale-specific factors make the endeavor a very complex undertaking. For example, a roadway in cut or strong prevailing winds can produce a setting where atmospheric sound propagation is unfavorable to any noise barrie ------------------------------ End of alt.music.moxy-fruvous digest V14 #11853 ***********************************************